The Maryland Medical Protocols for Emergency Medical Services

Maryland Institute for Emergency Medical Services Systems

Effective August 1, 2020
The complete “Maryland Medical Protocols for Emergency Medical Services” is also available on the Internet at www.MIEMSS.org. Protocols are occasionally amended during the year. Please check the MIEMSS website to be sure you have the most up-to-date version. The edition date appears on the lower portion of the page.
To All EMS Clinicians in the State of Maryland:

Re: 2020 revisions, updates, and additions to The Maryland Medical Protocols for Emergency Medical Services

EMS clinicians will be able to download the full document from the MIEMSS website at www.miemss.org and will receive a single copy of the 2020 pocket protocols.

The EMS Board has approved these protocols for implementation on August 1, 2020. Prior to August 1, all EMS must complete the Maryland EMS Update: 2020 (visit the Online Training Center) that will highlight the new material. Of note, the implementation was delayed from July 1 to August 1, 2020 for this year due to COVID-19.

Some major protocol additions, deletions, and changes have been made this year. The list of these changes is for reference only, and the information located in the full protocol book is the official medical reference for EMS clinicians.

Protocol changes:

- **Epinephrine Administration**: The administration of epinephrine in cardiac arrest has been modified to limit dosing during resuscitation based on findings of survival with good neurologic outcome. In addition, epinephrine is now the drug of choice for treating hypotension secondary to shock, replacing dopamine.

- **Pediatric Termination of Resuscitation (TOR)**: The indication for TOR has been expanded to include considerations for patients who have not yet reached their 18th birthday when meeting specific criteria. The protocol was approved after research and statewide focus groups were conducted by the Pediatric Emergency Medical Advisory Council (PEMAC).

- **Adult Rapid Sequence Intubation (RSI)**: Adult RSI has been moved from a pilot protocol to an optional supplemental protocol which continues to require a jurisdictional application for approval to be submitted to the State EMS Medical Director. The RSI procedure and program educational requirements have been updated with contributions from jurisdictions participating in the protocol.

- **Heat Emergencies**: Language has been added to allow for a team management approach of care with EMS clinicians and team/event physicians on the scene specifically allowing for the continuation of active cooling measures.

- **Ketamine**: The use of ketamine has been expanded to allow for use in the ventilatory difficulty secondary to bucking or combativeness protocol as well as allowing for treatment of CPR-induced awareness for all ALS clinicians.

- **Fluid Resuscitation**: Dosing recommendations have been modified to target more specific volumes and blood pressures in trauma patients based on literature review and current best practices. The updated recommendations come from work conducted by members of the protocol review committee and subject matter experts from area trauma centers.

- **Ketorolac**: This medication has been added to the formulary as an optional non-opioid medication for treatment of acute pain. Interested jurisdictions should submit an OSP application to the State EMS Medical Director if they wish to carry this medication.

Timothy P. Chizmar, MD, FACEP
State EMS Medical Director, MIEMSS

Theodore R. Delbridge, MD, MPH
Executive Director, MIEMSS
To: EMS Clinicians
Base Stations

From: Timothy Chizmar, MD, FACEP
State EMS Medical Director

Date: September 14, 2020

RE: Updates to Maryland Medical Protocols for Emergency Medical Services

The Maryland EMS Board has approved the following new and revised protocols with a release date of September 14, 2020. In addition, there are two typographical corrections below. The updated document contains “Release Date September 14, 2020” at the bottom of each page.

- Pediatric Termination of Resuscitation: (correction, page 70): May terminate resuscitation with ETCO2 less than 15 mmHg and administration of at least 1 dose (not 1 mg) of epinephrine (1:10,000).

- Shock/Hypoperfusion: (correction, page 154): 3(d) Hypotension is defined as a systolic blood pressure…less than $70 + (2 \times \text{years})$ (not $70 \times (2 \times \text{years})$ for patients greater than 1 year of age.

- OSP: Airway Management: Bi-Level Positive Airway Pressure (BiPAP) – Chronic: (revision, page 359): Paramedic may transport patients who are 13 years of age or older on BiPAP, if no change in settings within 6 hours (previously 48 hours) or changes reflecting improvement in the patient’s condition. Patients who are less than 13 years of age shall be screened by SCT service to determine crew composition.

- OSP: Airway Management: Bi-Level Positive Airway Pressure (BiPAP) – Acute: (addition, page 359-2): Paramedic may initiate BiPAP for patients who are 13 years of age or older.

- OSP: Heated/Humidified High Flow Nasal Cannula (HHFNC): (addition, pages 359-3, 359-4): Paramedic may initiate HHFNC for patients 13 years of age or older. For patients who are less than 13 years of age, SCT Paramedic/RN is required for the transport (with certain exceptions, as defined in the protocol).

EMS clinicians may download the full document or changed pages only from the MIEMSS website at www.miemss.org. If you have a printed 8 ½ x 11” three-ring-binder format of the protocols, please add the updated pages noted above.
TABLE OF CONTENTS

I. GENERAL INFORMATION
- General Provisions ... 1
- Important Numbers ... 3
- Maryland Trauma and Specialty Referral Centers 5
- Protocol Key ... 10
- Protocol Usage Flow Diagram .. 11
- Protocol Variation Procedure .. 12
- Inability to Carry Out Physician Order 13
- Physician Orders for Extraordinary Care Not Covered by Maryland Protocol (NEW ’20) ... 14

II. GENERAL PATIENT CARE
- Age-Related Normal Vital Signs .. 20

III. TREATMENT PROTOCOLS
- Abuse/Neglect .. 33
 - Abuse/Neglect .. 33
- Altered Mental Status
 - Altered Mental Status: Seizures .. 35
 - Altered Mental Status: Unresponsive Person 38
- Apparent Life-Threatening Event (ALTE)
 - Apparent Life-Threatening Event (ALTE) 40
- Behavioral Emergencies
 - Behavioral Emergencies .. 41
- Cardiac Emergencies
 - Non-Arrest Cardiac Guidelines .. 43
 - Universal Algorithm for Adult Emergency Cardiac Care for BLS .. 44
 - Universal Algorithm for Adult Emergency Cardiac Care for ALS 45
 - Universal Algorithm for Pediatric Emergency Cardiac Care for BLS 46
 - Universal Algorithm for Pediatric Emergency Cardiac Care for ALS 47
 - Bradycardia .. 48
 - Adult Bradycardia Algorithm .. 49
 - Pediatric Bradycardia Algorithm .. 50
 - Tachycardia .. 51
 - Adult Tachycardia Algorithm .. 53
 - Pediatric Tachycardia Algorithm .. 54
TABLE OF CONTENTS

I. Cardiac Arrest ... 55
 Adult Asystole Algorithm .. 58
 Pediatric Cardiac Arrest Algorithm 59
 Pulseless Electrical Activity (PEA) Algorithm 60
 VF and Pulseless VT Algorithm 61
J. Return of Spontaneous Circulation (ROSC) 62
K. Termination of Resuscitation ... 66
 Adult Termination of Resuscitation Algorithm Medical Arrest *(NEW '20)* 68
 Adult Termination of Resuscitation Algorithm Trauma Arrest *(NEW '20)* 69
 Pediatric Termination of Resuscitation Algorithm Medical Arrest *(NEW '20)* 70
 Pediatric Termination of Resuscitation Algorithm Trauma Arrest *(NEW '20)* 71
L. Pronouncement of Death in the Field 72
M. EMS DNR/MOLST ... 73
N. EMS DNR Flowchart .. 83
O. Chest Pain/Acute Coronary Syndrome 84
P. Hyperkalemia: Renal Dialysis/Failure or Crush Syndrome .. 86
Q. Implantable Cardioverter Defibrillator (ICD) Malfunction .. 88
R. ST Elevation Myocardial Infarction (STEMI) 90
S. Sudden Infant Death Syndrome (SIDS) 93

Environmental Emergencies

T. Cold Emergencies (Frostbite) ... 94
U. Cold Emergencies (Hypothermia) 96
V. Depressurization ... 98
W. Hazardous Materials Exposure 99
X. Heat-Related Emergencies .. 101
Y. Near-Drowning .. 102
Z. Overpressurization ... 103

Nausea and Vomiting

AA. Nausea and Vomiting ... 104

Obstetrical/Gynecological Emergencies

BB. Childbirth Algorithm .. 106
CC. Newly Born ... 108
 Universal Algorithm for Newly Born for BLS 108
 Universal Algorithm for Newly Born for ALS 109
 APGAR Chart ... 110
DD. Vaginal Bleeding ... 111

Overdose/Poisoning

EE. Carbon Monoxide/Smoke Inhalation 112
FF. Absorption ... 114
GG. Ingestion .. 116
HH. Inhalation ... 119
II. Injection .. 121
JJ. Stimulant Toxicity ... 123
KK. Excited Delirium Syndrome (ExDS) 125
TABLE OF CONTENTS

Pain Management
- LL. Pain Management ... 128

Respiratory Distress
- MM. Allergic Reaction ... 133
- NN. Anaphylaxis ... 136
- OO. Respiratory Distress: Chlorine or Phosgene Exposure *(NEW ’20)* 138
- PP. Respiratory Distress: Asthma/COPD .. 139
- QQ. Respiratory Distress: Croup ... 142
- RR. Pulmonary Edema/Congestive Heart Failure 143
 - Universal Algorithm for Pediatric Respiratory Distress for BLS 146
 - Universal Algorithm for Pediatric Respiratory Distress for ALS 147

Sepsis
- SS. Sepsis: Adult ... 148
- TT. Sepsis: Pediatric ... 150

Shock
- UU. Shock: Hypoperfusion .. 153

Stroke
- VV. Stroke: Neurological Emergencies .. 156
 - EMS Stroke Algorithm ... 159

Syncope
- VV2. Syncope ... 160

Trauma
- WW. Burns .. 161
 - Rule of Nines ... 163
- XX. Eye Trauma ... 164
- YY. Hand/Upper/Lower Extremity Trauma *(NEW ’20)* 166
- ZZ. Multiple/Severe Trauma *(NEW ’20)* 168
 - Glasgow Coma Scale .. 171
- AAA. Sexual Assault ... 172
- BBB. Spinal Motion Restriction .. 173
 - Spinal Motion Restriction Algorithm .. 177
- CCC. Trauma Arrest ... 178
- DDD. Trauma Decision Tree .. 180

IV. APPENDICES
- A. Glossary ... 181
- B. Procedures, Medical Devices, and Medications for EMS and Commercial Services 188
- C. BLS Pharmacology
 1. Acetaminophen ... 193
 2. Activated Charcoal (Without Sorbitol) 194
 3. Albuterol .. 195
 4. Aspirin ... 196
 5. Epinephrine (1:1,000) .. 197
 6. Epinephrine Auto-Injector ... 198
 7. Naloxone Public Safety and EMR ... 199
TABLE OF CONTENTS

D. ALS Pharmacology

1. Acetaminophen ... 203
2. Activated Charcoal (Without Sorbitol) 204
3. Adenosine ... 205
4. Albuterol .. 206
5. Amiodarone ... 208
6. Aspirin (**NEW ’20**) .. 210
7. Atropine Sulfate ... 211
8. Calcium Chloride ... 213
9. Dexamethasone .. 214
10. Dextrose .. 215
11. Diazepam .. 217
12. Diltiazem ... 218
13. Diphenhydramine Hydrochloride (**NEW ’20**) 220
14. Dopamine Hydrochloride ... 221
15. Epinephrine (**NEW ’20**) .. 223
16. Fentanyl .. 227
17. Glucagon .. 229
18. Haloperidol (Haldol) ... 230
19. Ipratropium .. 232
20. Ketamine (**NEW ’20**) .. 234
21. Ketorolac (**NEW ’20**) .. 237
22. Lactated Ringer’s .. 239
23. Lidocaine .. 241
24. Magnesium Sulfate .. 243
25. Midazolam ... 245
26. Morphine Sulfate ... 248
27. Naloxone ... 250
28. Nitroglycerin ... 251
29. Nitroglycerin Paste .. 253
30. Ondansetron ... 254
31. Oxygen ... 255
32. Sodium Bicarbonate ... 256
33. Terbutaline Sulfate (**NEW ’20**) 258
34. Verapamil .. 259
TABLE OF CONTENTS

E. Procedures

1. Accessing Central Venous Catheters and Devices...............................261

Airway Management Procedures (2–13)

2. Bag-Valve-Mask Ventilation...264
3. Continuous Positive Airway Pressure (CPAP)......................................266
4. Laryngeal Tube Airway Device (KING LTS-D™) 267
5. Gastric Tube..268
6. Nasotracheal Intubation...269
7. Needle Decompression Thoracostomy (NDT) 271
8. Obstructed Airway Foreign Body Removal: Direct Laryngoscopy 272
9. Orotracheal Intubation... 273
10. Tracheostomy Change..276
11. Tracheostomy Suctioning...278
12. Ventilatory Difficulty Secondary to Bucking or Combativeness........ 279
13. Ventilatory Management..280

Electrical Therapy Procedures (14–17)

14. Automated External Defibrillation...283
15. Cardioversion..285
16. Defibrillation..287
17. External Transcutaneous Cardiac Pacing.. 288

Other Procedures (18-32)

18. Go-Team Activation..290
19. External Jugular Intravenous Access ...292
20. Glucometer Protocol..293
21. High Performance CPR ..295
22. Intraosseous Infusion...301
23. Intravenous Maintenance Therapy for EMT......................................305
24. Medevac Utilization..308
25. Patient-Initiated Refusal of EMS ...314
26. Peripheral Intravenous Access for CRT-(I) and Paramedic, and IV Access Option for EMT Approved by EMS Operational Program...320
27. Physical and Chemical Restraints..322
28. Neuroprotective Induced Hypothermia..325
29. 12-Lead Electrocardiogram...327
30. Multiple Casualty Incident/Unusual Event.......................................329
31. Potentially Volatile Environment with Life-Sustaining Interventions....332
32. Emerging Infectious Disease (EID) ..338
TABLE OF CONTENTS

Interfacility

F. Amiodarone Maintenance Infusion for Interfacility Transport (NEW '20) .. 342
G. Lidocaine Infusion for Interfacility Transport ... 343
H. Morphine Sulfate Infusion for Interfacility Transport .. 344
I. Proton Pump Inhibitor for Interfacility Transport (NEW '20) ... 345

Pilot Programs

J. Vascular Doppler Device ... 347
K. Prehospital Ultrasound .. 348
L. Stabilization Center (NEW '20) .. 350
M. Alternative Destination Program (NEW '20) .. 351
N. Minor Definitive Care, Baltimore City Fire Department .. 353

V. JURISDICTIONAL OPTIONAL SUPPLEMENTAL PROGRAMS/PROTOCOLS

A. Airway Management: Bi-Level Positive
 1. Airway Pressure (BiPAP) – Chronic (NEW '20) .. 359
 2. Airway Management: Bi-Level Positive
 1. Airway Pressure (BiPAP) – Acute (NEW '20) ... 359-2
 3. Airway Management: Heated/Humidified High-Flow
 Nasal Cannula (HHFNC) (NEW '20) .. 359-3
B. Airway Management: Laryngeal Mask Airway with Design to Facilitate Hospital Endotracheal Intubation ... 360
C. Airway Management: Video Laryngoscopy for Orotracheal Intubation ... 361
D. Antimicrobial Infusion for Interfacility Transport ... 363
E. BLS Glucometer .. 365
F. Cyanide Poisoning .. 366
G. EMT Acquisition of 12-Lead Electrocardiography .. 370
H. Glycoprotein IIb/IIIa Antagonist Infusions
 1. Glycoprotein IIb/IIIa Antagonist ... 373
 2. Glycoprotein IIb/IIIa Antagonist ... 374
I. Heparin Infusion for Interfacility Transport ... 375
 1. Heparin .. 376
J. Intranasal Naloxone for Commercial Service BLS Clinicians .. 377
K. MARK I / DuoDote Kits (Atropine and 2-PAM Auto-injectors) ... 383
L. Maryland Vaccination and Testing Program .. 388
M. Mechanical CPR .. 394
N. Mobile Integrated Community Health Program ... 397
O. Naloxone “Leave Behind” Protocol .. 403
P. Pelvic Stabilization Binder Device ... 404
TABLE OF CONTENTS

Q. Rapid Sequence Intubation – Adult *(NEW ’20)* .. 406
 1. RSI Optional Supplemental Program ... 406
 2. Ventilatory Difficulty Secondary to Bucking or Combativeness in Intubated Patients ... 408
 3. Protocol for Cricothyroidotomy (Surgical and Needle) .. 410
R. Rapid Sequence Intubation – Pediatric ... 412
 1. RSI Optional Supplemental Program ... 412
 2. Ventilatory Difficulty Secondary to Bucking or Combativeness in Intubated Patients ... 414
 3. Protocol for Cricothyroidotomy (Surgical and Needle) .. 416
 4. RSI Quality Assurance Program ... 417
S. Rapid Sequence Intubation – Pharmacology *(NEW ’20)* ... 419
 1. Etomidate .. 419
 2. Ketamine ... 420
 3. Midazolam .. 421
 4. Succinylcholine .. 422
 5. Vecuronium .. 423
T. Specialty Care Paramedic ... 424
U. Surgical Cricothyroidotomy – Adult ... 429
V. Tactical EMS ... 430
W. Transport of Acute Ventilated Interfacility Patients .. 452
X. Transport of Chronic and Scene Ventilated Patients .. 454
Y. Transport to Freestanding Emergency Medical Facility at Bulle Rock 457
Z. Transport to Freestanding Emergency Medical Facility (Base Station or Non-Base Station) .. 458
AA. Viral Pandemic: Triage Protocol (Alternative Dispatch Protocol During Pandemic Illness) *(NEW ’20)* ... 460
BB. Wilderness Emergency Medical Services Protocols .. 462

VI. RESEARCH PROTOCOLS .. 487
 A. LAMS Stroke Research Protocol .. 487
 B. Pediatric Destination Decision Tree (PDTree) ... 490
I. GENERAL INFORMATION

A. GENERAL PROVISIONS

The goal of prehospital emergency medical services is to deliver a viable patient to appropriate definitive care as soon as possible. Optimal prehospital care results from a combination of careful patient assessment, essential prehospital emergency medical services, and appropriate medical consultation.

The Maryland Medical Protocols were developed to standardize the emergency patient care that EMS clinicians, through medical consultation, deliver at the scene of illness or injury and while transporting the patient to the closest appropriate hospital. These protocols will help EMS clinicians anticipate and be better prepared to give the emergency patient care ordered during the medical consultation.

Maryland has highly trained and dedicated basic and advanced life support personnel who may need online medical consultation only for complicated or extended resuscitative patient care. These protocols are a form of “standing orders” for emergency patient care intervention in a patient who has a life-threatening illness or injury. It remains the responsibility of the EMT, CRT-(I), or paramedic to obtain online medical consultation when appropriate. If it is genuinely impossible or inappropriate (i.e., when rendering emergency care to a patient who has a life-threatening injury or medical condition) to obtain online medical consultation, the EMT/CRT-(I)/paramedic may render emergency patient care in accordance with these protocols in an effort to save a patient’s life or limb. Whenever such emergency lifesaving patient care is rendered, the EMT/CRT-(I)/paramedic must document the treatment rendered and the reason online medical consultation could not be obtained on the Patient Care Report (PCR) and on an additional narrative. In addition, the “exceptional call” area on the PCR must be marked, and the clinician must immediately notify the EMS Jurisdiction. The EMS Jurisdiction must notify the State EMS Medical Director within five (5) days of the incident. This general provision applies throughout these protocols.

Requests for additions, deletions, or exceptions must be submitted through the State EMS Medical Director’s Office of the Maryland Institute for Emergency Medical Services Systems.

Unless otherwise specified, a mandate with a stated year but no date shall be interpreted as taking effect on the protocol implementation date for that year.

THE GENERAL PATIENT CARE SECTION AND THE ALGORITHMS MUST BE FOLLOWED IN THE SPECIFIC SEQUENCE NOTED.

FOR ALL OTHER TREATMENT PROTOCOLS, THE LETTER AND NUMERICAL OUTLINE FORMAT IS STRICTLY FOR RAPID AND UNIFORM REFERENCE AND DOES NOT IMPLY OR DIRECT A MANDATORY SEQUENCE FOR PATIENT CARE.

THE GENERAL PATIENT CARE SECTION SHALL APPLY TO ALL PATIENT ENCOUNTERS UNLESS OTHERWISE NOTED IN ANY SPECIFIC TREATMENT PROTOCOL. (NEW ’20)
IF AN EMERGENCY MEDICAL RESPONDER IS DISPATCHED AS AN EMS UNIT, OR FOR PURPOSES RELATED TO MEDICAL ASSISTANCE, OXYGEN AND AED TREATMENT MAY BE UTILIZED, WHEN APPROPRIATE AND APPLICABLE, PROVIDED THE EMERGENCY MEDICAL RESPONDER IS JURISDICTIONALLY AUTHORIZED TO USE AN AED AND/OR THE EMERGENCY MEDICAL RESPONDER HAS BEEN EDUCATED AND TRAINED TO PROVIDE OXYGEN AND/OR AED THERAPY.

THE EMERGENCY MEDICAL RESPONDER SHALL DOCUMENT ALL PATIENT CARE.
B. IMPORTANT NUMBERS

1. Commercial Ambulance Licensing and Regulation Office (410) 706-8511
 Fax (410) 706-8552
2. Critical Incident Stress Management (800) 648-3001
3. Office of Licensure and Certification Office (800) 762-7157
 Fax (410) 706-2367
4. Regional Programs
 a) Region I (Allegany and Garrett Counties) Office (301) 895-5934
 Fax (301) 687-0129
 b) Region II (Washington and Frederick Counties) Office (301) 791-2366
 Fax (301) 791-9231
 c) Region III (Baltimore City, Anne Arundel, Baltimore, Carroll, Harford, and Howard Counties) Office (410) 706-3996
 Fax (410) 706-8530
 d) Region IV (Caroline, Cecil, Dorchester, Kent, Queen Anne's, Somerset, Talbot, Wicomico, and Worcester Counties) Office (410) 822-1799
 Fax (410) 822-0861
 e) Region V (Calvert, Charles, Montgomery, Prince George's, and St. Mary's Counties) Office (301) 474-1485
 Fax (301) 513-5941
5. State EMS Medical Director Office (410) 706-0880
 Fax (410) 706-0853
6. SYSCOM (Administrative) (800) 648-3001
7. EMRC
 a) Consult Line (Region I) (301) 722-0494
 b) Consult Line (Region III) (800) 492-3805
 c) Consult Line (Region IV) (877) 963-6963
 d) Consult Line (Region V) (877) 840-4245
IMPORTANT NUMBERS (Continued)

POISON INFORMATION CENTER RECOMMENDATIONS SHOULD BE SOLICITED IN CONJUNCTION WITH MEDICAL CONSULTATION, BUT MEDICATION ORDERS CAN ONLY BE ACCEPTED FROM AN APPROVED BASE STATION.

8. Poison Control Centers
 a) Maryland Poison Center/University of Maryland School of Pharmacy, Baltimore (800) 222-1222
 b) National Capital Poison Center, Washington, DC (800) 222-1222

9. In-Patient Hospice Facilities
 a) Gilchrist Center–Towson (443) 849-8200
 b) Gilchrist Center Baltimore–Joseph Richey House (410) 523-2150
 c) Stella Maris Hospice (410) 560-9695

10. Tissue Donation
 a) Maryland Donor Referral Line Living Legacy (Majority of Maryland) (800) 923-1133
 b) Washington Regional Transplant Community (Charles, Montgomery, and Prince George’s Counties) (703) 641-0100
C. MARYLAND TRAUMA AND SPECIALTY REFERRAL CENTERS

<table>
<thead>
<tr>
<th>Primary Adult Resource Center</th>
<th>R Adams Cowley Shock Trauma Center (UM), Baltimore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I Trauma Center</td>
<td>The Johns Hopkins Hospital Adult Trauma Center, Baltimore</td>
</tr>
<tr>
<td>Level II Trauma Centers</td>
<td>Johns Hopkins Bayview Medical Center, Baltimore</td>
</tr>
<tr>
<td></td>
<td>Prince George’s Hospital Center (UM), Cheverly</td>
</tr>
<tr>
<td></td>
<td>Sinai Hospital (LifeBridge), Baltimore</td>
</tr>
<tr>
<td></td>
<td>Suburban Hospital (JHM), Bethesda</td>
</tr>
<tr>
<td>Level III Trauma Centers</td>
<td>Meritus Medical Center, Hagerstown</td>
</tr>
<tr>
<td></td>
<td>Peninsula Regional Medical Center, Salisbury</td>
</tr>
<tr>
<td></td>
<td>Western Maryland Regional Medical Center (UPMC), Cumberland</td>
</tr>
<tr>
<td>Out-of-State Centers</td>
<td>Christiana Care Health System, Wilmington, DE</td>
</tr>
<tr>
<td></td>
<td>MedStar Washington Hospital Center, Washington, DC</td>
</tr>
</tbody>
</table>

Specialty Referral Centers

<table>
<thead>
<tr>
<th>Eye Trauma</th>
<th>Wilmer Eye Institute/The Johns Hopkins Hospital, Baltimore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand/Upper Extremity Trauma</td>
<td>The Curtis National Hand Center for Treatment of the Hand and Upper Extremity/Union Memorial Hospital (MedStar), Baltimore</td>
</tr>
<tr>
<td>Hyperbaric Medicine</td>
<td>Center for Hyperbaric Medicine/R Adams Cowley Shock Trauma Center (UM), Baltimore</td>
</tr>
<tr>
<td>Neurotrauma (Head and Spinal Cord Injuries)</td>
<td>Neurotrauma Center/R Adams Cowley Shock Trauma Center (UM), Baltimore</td>
</tr>
<tr>
<td>Pediatric Trauma</td>
<td>Johns Hopkins Children’s Center, Baltimore</td>
</tr>
<tr>
<td></td>
<td>Children’s National Medical Center, Washington, DC</td>
</tr>
<tr>
<td>Burns</td>
<td>Adult Burn Center/Johns Hopkins Bayview Medical Center, Baltimore</td>
</tr>
<tr>
<td></td>
<td>Adult Burn Center/MedStar Washington Hospital Center, Washington, DC</td>
</tr>
<tr>
<td></td>
<td>Pediatric Burn Center/Johns Hopkins Children’s Center, Baltimore</td>
</tr>
<tr>
<td></td>
<td>Pediatric Burn Center/Children’s National Medical Center, Washington, DC</td>
</tr>
</tbody>
</table>

Health Care Facility Codes may be found online at www.MIEMSS.org, under the Protocols tab.
Specialty Referral Centers

Perinatal Referral Centers
- Anne Arundel Medical Center, Annapolis
- Franklin Square Medical Center (MedStar), Baltimore
- Frederick Health Hospital, Frederick
- Greater Baltimore Medical Center, Towson
- Holy Cross Hospital, Silver Spring
- Howard County General Hospital (JHM), Columbia
- Johns Hopkins Bayview Medical Center, Baltimore
- Mercy Medical Center, Baltimore
- Prince George’s Hospital Center (UM), Cheverly
- Saint Agnes Hospital, Baltimore
- Saint Joseph Medical Center (UM), Baltimore
- Shady Grove Adventist Hospital, Gaithersburg
- Sinai Hospital of Baltimore (LifeBridge)
- The Johns Hopkins Hospital, Baltimore
- University of Maryland Medical Center, Baltimore

Primary Stroke
- Anne Arundel Medical Center, Annapolis
- Atlantic General Hospital, Berlin
- Baltimore Washington Medical Center (UM), Glen Burnie
- CalvertHealth Medical Center, Prince Frederick
- Carroll Hospital Center (LifeBridge), Westminster
- Charles Regional Medical Center (UM), La Plata
- Doctor's Community Hospital, Lanham
- Franklin Square Medical Center (MedStar), Baltimore
- Frederick Health Hospital, Frederick
- Good Samaritan Hospital (MedStar), Baltimore
- Greater Baltimore Medical Center, Baltimore
- Harbor Hospital (MedStar), Baltimore
- Harford Memorial Hospital (UMUCH), Havre De Grace
- Holy Cross Hospital, Germantown
- Holy Cross Hospital, Silver Spring
- Howard County General Hospital (JHM), Columbia
- Mercy Medical Center, Baltimore
- Meritus Medical Center, Hagerstown
- Midtown Campus (UM), Baltimore
- Montgomery Medical Center (MedStar), Olney
- Northwest Hospital (LifeBridge), Baltimore
- Peninsula Regional Medical Center, Salisbury
- Prince George’s Hospital Center (UM), Cheverly
- Saint Agnes Hospital, Baltimore
- Saint Joseph Medical Center (UM), Baltimore
- Saint Mary’s Hospital (MedStar), Leonardtown

MARYLAND TRAUMA AND SPECIALTY REFERRAL CENTERS (Continued)
MARYLAND TRAUMA AND SPECIALTY REFERRAL CENTERS (Continued)

Primary Stroke (Continued)
- Shady Grove Adventist Hospital, Rockville
- Shore Medical Center at Easton (UMSRH)
- Sinai Hospital of Baltimore (LifeBridge)
- Southern Maryland Hospital (MedStar), Clinton
- Suburban Hospital (JHM), Bethesda
- Union Hospital of Cecil County (ChristianaCare), Elkton
- Union Memorial Hospital (MedStar), Baltimore
- Upper Chesapeake Medical Center (UMUCH), Bel Air
- Western Maryland Regional Medical Center (UMPC), Cumberland
- White Oak Medical Center (Adventist), Takoma Park *(NEW ’20)*

Comprehensive Stroke
- Johns Hopkins Bayview Medical Center, Baltimore
- The Johns Hopkins Hospital, Baltimore
- University of Maryland Medical Center, Baltimore

Cardiac Interventional
- Anne Arundel Medical Center, Annapolis
- Baltimore Washington Medical Center (UM), Glen Burnie
- Bayhealth Kent General, Dover, DE
- Carroll Hospital Center (LifeBridge), Westminster
- Christiana Care Health System, Newark, DE
- Franklin Square Medical Center (MedStar), Baltimore
- Frederick Health Hospital, Frederick
- Holy Cross Hospital, Silver Spring
- Howard County General Hospital (JHM), Columbia
- Johns Hopkins Bayview Medical Center, Baltimore
- MedStar Washington Hospital Center, Washington, DC
- Meritus Medical Center, Hagerstown
- Nanticoke Memorial Hospital, Seaford, DE
- Peninsula Regional Medical Center, Salisbury
- Prince George’s Hospital Center (UM), Cheverly
- Saint Agnes Hospital, Baltimore
- Saint Joseph Medical Center (UM), Baltimore
- Shady Grove Adventist Hospital, Rockville
- Shore Medical Center at Easton (UM)
- Sinai Hospital of Baltimore (LifeBridge)
- Southern Maryland Hospital (MedStar), Clinton
- Suburban Hospital (JHM), Bethesda
- The Johns Hopkins Hospital, Baltimore
- Union Memorial Hospital (MedStar), Baltimore
- University of Maryland Medical Center, Baltimore
- Upper Chesapeake Medical Center (UMUCH), Bel Air
- Western Maryland Regional Medical Center (UMPC), Cumberland
- White Oak Medical Center (Adventist), Takoma Park *(NEW ’20)*
MARYLAND TRAUMA AND SPECIALTY REFERRAL CENTERS (Continued)

Maryland Sexual Assault Forensic Examination (SAFE) Hospitals
SAFE hospital programs recognized by the Maryland Coalition Against Sexual Assault (MCASA)

• Anne Arundel Medical Center (Adult)
• Atlantic General Hospital (Pediatric and Adult)
• Baltimore Washington Medical Center (UM) (Pediatric and Adult)
• Calvert Memorial Hospital (Adult)
• Carroll Hospital Center (LifeBridge) (Pediatric and Adult)
• Charles Regional Medical Center (UM) (Pediatric and Adult)
• Chestertown Medical Center (UMSRH) (Adult)
• Dorchester Medical Center (UMSRH) (Pediatric and Adult)
• Easton Medical Center (UMSRH) (Pediatric and Adult)
• Frederick Health Hospital (Pediatric and Adult)
• Garrett Regional Medical Center (WVU) (Pediatric and Adult)
• Greater Baltimore Medical Center (Pediatric and Adult)
• Harford Memorial Hospital (UMUCH) (Adult) (NEW ’20)
• Howard County General Hospital (JHM) (Pediatric and Adult)
• Mercy Medical Center (Adult)
• Meritus Medical Center (Pediatric and Adult)
• Peninsula Regional Medical Center (Pediatric and Adult)
• Prince George’s Hospital Center (UM) (Pediatric and Adult)
• Saint Mary’s Hospital (MedStar) (Pediatric and Adult)
• Shady Grove Adventist Hospital (Pediatric and Adult)
• Union Hospital of Cecil County (ChristianaCare) (Adult)
• University of Maryland Medical Center (Pediatric)
• Western Maryland Regional Medical Center (UPMC) (Pediatric and Adult)

Maryland Emerging Infectious Disease (EID) Treatment and Assessment Hospitals
EID hospitals are reviewed, approved, and recognized as such by the Maryland Department of Health Infectious Disease Epidemiology and Outbreak Response Bureau.

Maryland Primary Ebola/Special Pathogen Treatment Hospital
- The Johns Hopkins Hospital

Maryland Alternate Ebola/Special Pathogen Treatment Hospital
- University of Maryland Medical Center

Maryland Ebola/Special Pathogen Assessment Hospitals
- Anne Arundel Medical Center
- Frederick Health Hospital
- Holy Cross Hospital
- MedStar Southern Maryland Hospital Center
- Peninsula Regional Medical Center
D. PROTOCOL KEY

1. Basic Life Support Level Care

2. Advanced Life Support Level Care

3. Requires Medical Consultation

4. Pediatric Care
 NOTE: ALL CLINICIANS (BLS and ALS) SHOULD CHECK ALL PEDIATRIC SECTIONS FOR NECESSARY CARE.

<table>
<thead>
<tr>
<th>Description</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly Born</td>
<td>Up to 1 hour</td>
</tr>
<tr>
<td>Neonate</td>
<td>1 hour to 28 days</td>
</tr>
<tr>
<td>Infant</td>
<td>> 28 days to 1 year</td>
</tr>
<tr>
<td>Toddler</td>
<td>1 to < 2 years</td>
</tr>
<tr>
<td>Preschooler</td>
<td>2 to 4 years</td>
</tr>
<tr>
<td>School-Age</td>
<td>5 to 12 years</td>
</tr>
<tr>
<td>Adolescent</td>
<td>13 to 18th birthday</td>
</tr>
</tbody>
</table>

5. Caution/Warning/Alert
E. PROTOCOL USAGE FLOW DIAGRAM

Response

Scene Arrival + Size Up

Personal Protective Equipment

Patient Approach

Initial Assessment

History + Physical Exam

Withhold Resuscitation

YES

Pronouncement of Death

NO

Palliative Care Protocol

OPTION A/B

YES

B

NO

A

Detailed + Ongoing Assessment

Assign Clinical Priority

Procedures

Pharmacology

Inability to Carry Out Physician’s Orders

Extraordinary Care

Determine and Provide Care According to Treatment Protocol

Disposition: Determine Receiving Facility + Mode of Transportation

Transport the Patient when Appropriate

Communications:
Consult / Notify Receiving Facility

Transfer of Care / Rendezvous:
Transfer Patient to Receiving Facility

Complete Documentation

YES

NO

Terminate of Resuscitation Efforts

YES

NO
F. PROTOCOL VARIATION PROCEDURE

If an error or variance occurs (i.e., any act or failure to act, in practice or judgment, involving patient care that is not consistent with established protocol, whether or not it results in any change in the patient’s status or condition):

1. The EMS clinician must:
 a) Notify the consulting physician via radio as soon as the error or variance is discovered, if prior to arrival at the receiving hospital,
 b) Monitor the patient’s condition very closely for any changes,
 c) Notify the receiving physician upon arrival, and
 d) Notify the local EMS jurisdiction or licensed commercial ambulance service and Program Medical Director within 24 hours of the incident.

2. The EMS Operational Program Quality Assurance Officer, in accordance with COMAR 30.03.04.02 B(6), must:
 a) Within 5 days of being made aware of the incident, submit written notification of the incident to the:
 (1) Local EMS jurisdiction,
 (2) Program Medical Director,
 (3) MIEMSS Compliance Office, and
 (4) State EMS Medical Director.
 b) Within 14 days of the written notification of the incident, initiate a Medical Review Committee QA investigation.
 c) Within 30 days of the written notification of the incident, forward to MIEMSS’ Compliance Office and State EMS Medical Director the written results of the Medical Review Committee QA investigation and recommendations.
G. INABILITY TO CARRY OUT PHYSICIAN ORDER

Occasionally, a situation may arise in which a physician’s order cannot be carried out (e.g., the clinician feels the administration of an ordered medication would endanger the patient, a medication is not available, or a physician’s order is outside the protocol). If this occurs:

1. The EMS clinician must:
 a) Immediately notify the consulting physician as to the reason the order cannot be carried out.
 b) Document on the patient care report what was ordered, the time it was ordered, and the reason the order could not be carried out.
 c) As soon as practical following the call, notify the local EMS jurisdiction of the incident.

2. Public Service EMS Operational Programs must:
 a) Within 5 days of being made aware of the incident, submit written notification of the incident through the local EMS jurisdiction and Program Medical Director to the Regional Medical Director with a copy to the State EMS Medical Director. The MIEMSS Regional EMS Administrator shall be notified at the discretion of the Regional Medical Director.
 b) Within 14 days of the written notification of the incident, initiate a QA investigation under the authority of the Medical Review Committee.
 c) Within 30 days of the written notification of the incident, forward to MIEMSS’ Compliance Office and State EMS Medical Director written results of the Medical Review Committee QA investigation and recommendations.

3. Licensed Commercial Programs must:
 a) Within 5 days of being made aware of the incident, submit written notification of the incident through the commercial Program Medical Director to the Director of the State Office of Commercial Ambulance Licensing and Regulation with a copy to the State EMS Medical Director.
 b) Within 14 days of the written notification of the incident, initiate a QA investigation under the authority of the Medical Review Committee.
 c) Within 30 days of the written notification of the incident, forward to the Program Medical Director and to the Director of the State Office of Commercial Ambulance Licensing and Regulation and State EMS Medical Director written results of the Medical Review Committee QA investigation and recommendations.
H. PHYSICIAN ORDERS FOR EXTRAORDINARY CARE NOT COVERED BY MARYLAND PROTOCOL (NEW ’20)

Rarely, a physician providing on-line medical consultation may direct an EMS clinician to render care that is life-saving but not directly addressed by the protocols.

1. **ALL** of the following criteria MUST be present for EMS clinicians to proceed with an order under this section:

 a) During the consultation, both the consulting physician and the EMS clinician must agree that the patient’s condition and extraordinary care are not addressed elsewhere within these medical protocols and that the order is absolutely necessary to maintain the life of the patient.

 b) The EMS clinician must feel capable of correctly performing the care directed by the consulting physician, based on the instructions given by the consulting physician.

 c) The EMS clinician must inform the consulting physician of the effect of the treatment and notify the receiving physician of the treatment upon arrival at the hospital (if the receiving physician is different than the consulting physician).

 d) The EMS clinician must inform the EMS Operational Program Medical Director as soon as practical after the call.

2. If an EMS clinician receives an order for care that is not covered by Maryland protocols and does not feel comfortable with it or does not agree that it is absolutely necessary to maintain the life of the patient, they shall proceed with the “Inability to Carry Out Physician Order” section.

3. This extraordinary care protocol is intended to address the potential rare, unusual or unforeseen situations not specifically addressed within protocols. This extraordinary care protocol is neither a carte blanche for any and all actions nor a device to avoid or circumvent protocols. In all situations, emergency health care clinicians, both EMS and on-line physicians providing medical direction, are accountable for their actions in discharging their patient care responsibilities.

EXTRAORDINARY CARE CHECKLIST

- Identify the need for extraordinary care with physician consult and EMS clinician acceptance.
 - Care is not covered elsewhere in the protocols.
 - Care is absolutely necessary to maintain the life of the patient.
- Immediately upon delivery of patient, EMS clinician must notify the receiving physician of the effect of treatment rendered.
- Notify the EMS Operational Program Medical Director as soon as practical after the call.
II. GENERAL PATIENT CARE (GPC)

THE GENERAL PATIENT CARE SECTION SHALL APPLY TO ALL PATIENT ENCOUNTERS UNLESS OTHERWISE NOTED IN ANY SPECIFIC TREATMENT PROTOCOL. (NEW ’20)

A. RESPONSE
Review the dispatch information and select appropriate response.

B. SCENE ARRIVAL AND SIZE-UP
1. Consider Body Substance Isolation (BSI).
2. Consider Personal Protective Equipment (PPE).
3. Evaluate the scene safety.
4. Determine the number of patients.
5. Consider the need for additional resources.

C. PATIENT APPROACH
1. Determine the Mechanism of Injury (MOI)/Nature of Illness (NOI).
2. If appropriate, begin triage and initiate Mass Casualty Incident (MCI) procedures.

D. INITIAL ASSESSMENT
CORRECT LIFE-THREATENING PROBLEMS AS IDENTIFIED.
STABILIZE CERVICAL SPINE WHEN APPROPRIATE.

FOR PEDIATRIC PATIENTS, CONSIDER USING THE PEDIATRIC ASSESSMENT TRIANGLE.

1. Assess mental status
 a) Alert
 b) Responds to Verbal stimuli
 c) Responds to Painful stimuli
 d) Unresponsive

2. Airway
 a) Open and establish airway using appropriate adjunct.
 b) Place patient in appropriate position.
 c) Suction airway as needed, including tracheostomy tubes.
IF A PATENT AIRWAY CANNOT BE ESTABLISHED, THE PATIENT MUST BE TRANSPORTED TO THE NEAREST APPROPRIATE HOSPITAL-BASED EMERGENCY DEPARTMENT OR DESIGNATED FREESTANDING EMERGENCY MEDICAL FACILITY. ONCE THE PATIENT PRESENTS TO THE HOSPITAL OR DESIGNATED FREESTANDING EMERGENCY MEDICAL FACILITY FOR TREATMENT OF AN EMERGENCY CONDITION, TREATMENT AND TRANSFER DECISIONS ARE THE RESPONSIBILITY OF THE HOSPITAL UNDER APPLICABLE LAW. THE CLINICIAN SHOULD STAND BY TO BE AVAILABLE FOR AND ASSIST WITH TRANSFER OF THE PATIENT IF THE HOSPITAL DETERMINES SUCH A TRANSFER IS APPROPRIATE.

IN INFANTS AND YOUNG CHILDREN, INSPIRATORY STRIDOR IS AN INDICATION OF UPPER AIRWAY FOREIGN BODY OR PARTIAL AIRWAY OBSTRUCTION. REQUEST ALS RENDEZVOUS. TRANSPORT THE PATIENT RAPIDLY AND CAUTIOUSLY AND HAVE FOREIGN BODY AIRWAY REMOVAL EQUIPMENT READY FOR IMMEDIATE USE IN CASE THE PATIENT'S AIRWAY BECOMES OBSTRUCTED.

3. Breathing
 a) Determine if breathing is adequate. Assess oxygen saturation (SpO₂) with portable pulse oximeter (required on all transport units since 2012).
 (1) If patient’s ventilations are not adequate, provide assistance with 100% oxygen using Bag-Valve-Mask (BVM).
 (i) For all ages except neonates, 1 breath every 5 seconds (8–12 breaths/min) (manually-activated positive pressure oxygen delivery device is not recommended for this group)
 (ii) For a neonate, 1 breath every 3 seconds (higher rates may be required)
 (2) The decision to oxygenate will be based on the patient’s clinical condition.
 (i) SpO₂ greater than or equal to 94% is considered normoxia in adults and children. Supplemental oxygen is not needed if SpO₂ greater than or equal to 94% unless the patient is in respiratory distress, acutely dyspneic, or suffering from suspected CO poisoning. Patients in severe respiratory distress may benefit from high flow oxygen from a nonre-breather (NRB).
 Note: Respiratory distress is present if the patient has retractions, nasal flaring, wheezing, stridor, or difficulty speaking.
 (ii) Unless in respiratory distress, avoid administration of high flow oxygen to patients presenting with the following conditions:
 (a) STEMI / angina
 (b) CVA / stroke
 (c) Post arrest
 (iii) CO exposure: Apply 100% oxygen via NRB mask. Maintain SpO₂ at 100%.
 (3) If available, utilize ETCO₂ waveform monitoring in intubated patients (required on all ALS transport units for advanced airway management since 2015).
(4) Consider carbon monoxide measurement, if available.

b) Hyperventilate the head-injured patient only if signs/symptoms of herniation are present, including posturing, loss of pupillary light response, dilation of one or both pupils, vomiting, hypertension, bradycardia, and/or irregular respirations.

(1) If hyperventilating, use the following rates
 - Adult (including adolescent 13 years of age or older): 20 breaths per minute
 - Child (1-12 years of age): 30 breaths per minute
 - Infant (less than 1 year of age): 35 breaths per minute

(2) If hyperventilating, use ETCO₂ monitoring if available.

NEVER WITHHOLD OXYGEN FROM A PATIENT IN RESPIRATORY DISTRESS!

<table>
<thead>
<tr>
<th>Percent O₂ Saturation</th>
<th>Ranges</th>
<th>General Patient Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>94–100%</td>
<td>Normal</td>
<td>Give oxygen as necessary</td>
</tr>
<tr>
<td>91–93%</td>
<td>Mild Hypoxia</td>
<td>Give oxygen as necessary</td>
</tr>
<tr>
<td>86–90%</td>
<td>Moderate Hypoxia</td>
<td>Give 100% oxygen Assisting Ventilations if necessary</td>
</tr>
<tr>
<td>less than or equal to 85%</td>
<td>Severe Hypoxia</td>
<td>Give 100% oxygen Assist Ventilations If indicated, Intubate</td>
</tr>
</tbody>
</table>

INACCURATE OR MISLEADING SpO₂ READINGS MAY OCCUR IN THE FOLLOWING PATIENTS: HYPOTHERMIC, HYPOPERFUSION (SHOCK), CO POISONING, HEMOGLOBIN ABNORMALITY, ANEMIA, AND VASOCONSTRICTION.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>FLOW RATE</th>
<th>CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal Cannula</td>
<td>2–6 lpm</td>
<td>24–44%</td>
</tr>
<tr>
<td>Venturi Mask</td>
<td>Variable</td>
<td>24–60%</td>
</tr>
<tr>
<td>Partial Rebreather Mask</td>
<td>6–10 lpm</td>
<td>35–60%</td>
</tr>
<tr>
<td>Simple Face Mask</td>
<td>6–10 lpm</td>
<td>35–60%</td>
</tr>
<tr>
<td>Pocket Mask</td>
<td>12–15 lpm</td>
<td>50–60%</td>
</tr>
<tr>
<td>Non-Rebreather Mask</td>
<td>12–15 lpm</td>
<td>80–100%</td>
</tr>
<tr>
<td>Bag-Valve-Mask</td>
<td>12–15 lpm</td>
<td>90–100%</td>
</tr>
</tbody>
</table>
4. Circulation

ONCE CONFIRMED PULSELESS, HIGH-QUALITY CONTINUOUS CPR WITH FREQUENT CLINICIAN ROTATION IS AN ESSENTIAL COMPONENT IN THE SUCCESSFUL RESUSCITATION OF THE ARRESTED PATIENT. THIS MAY BE ACCOMPLISHED THROUGH MANUAL OR MECHANICAL MEANS, AS APPROPRIATE, IN ADULTS. MECHANICAL METHODS OF COMPRESSION ARE NOT INDICATED FOR INFANTS OR CHILDREN WHO HAVE NOT YET REACHED THEIR 13th BIRTHDAY.

PERFORM CPR WHILE PREPARING FOR RHYTHM ANALYSIS AND DEFIBRILLATION.

a) Assess pulse.

(1) Patients within the first hour after delivery, refer to Newly Born Protocol.

(2) Patients from one hour after birth up to those who have not reached their 13th birthday, refer to the Universal Algorithm for Pediatric Emergency Cardiac Care for BLS.

(3) Patients 13 years of age or greater, refer to the Universal Algorithm for Adult Emergency Cardiac Care for BLS.

<table>
<thead>
<tr>
<th>High Quality CPR Reference Chart for All Ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Compression-ventilation ratio without advanced airway</td>
</tr>
<tr>
<td>Compression-ventilation ratio WITH advanced airway</td>
</tr>
<tr>
<td>Compression rate</td>
</tr>
<tr>
<td>Compression depth</td>
</tr>
<tr>
<td>Hand placement</td>
</tr>
</tbody>
</table>

b) Assess for and manage profuse bleeding, using a method appropriate for the patient's injuries (NEW '20):

(1) Direct pressure

(2) Wound packing

(3) Hemostatic gauze

(4) Tourniquet or junctional tourniquet (with jurisdictional training)

c) Assess skin color, temperature, and capillary refill.
5. Disability
 a) Perform Mini-Neurologic Assessment (Pulse/Motor/Sensory).
 b) Spinal protection
 (1) The clinician shall determine the appropriate method to use in spinal protection
 of the patient. Infant or child car seats may NOT be used as a spinal immobilization
 device for the pediatric patient.
 (2) Patients who have a blunt trauma with a high-energy mechanism of injury that
 has potential to cause spinal cord injury or vertebral instability and one or more
 the following should receive spinal protection.
 (a) Midline spinal pain, tenderness, or deformity
 (b) Signs and symptoms of new paraplegia or quadriplegia
 (c) Focal neurological deficit
 (d) Altered mental status or disorientation
 (e) Distracting injury: Any injury (e.g., fracture, chest, or abdominal trauma)
 associated with significant discomfort that could potentially distract from
 a patient’s ability to accurately discern or define spinal column pain or
 tenderness.

 In addition to the above indicators for adults, the below apply to children who
 have not yet reached their 15th birthday.
 (f) Neck pain or torticollis
 (g) High-impact diving incident or high risk motor vehicle crash (head on
 collision, rollover, ejected from the vehicle, death in the same crash, or
 speed greater than 55 mph)
 (h) Substantial torso injury
 (i) Conditions predisposing to spine injury
 (3) If NO to all of the above, transport as appropriate.

6. Exposure
 To assess patient’s injuries, remove clothing as necessary, considering condition
 and environment.

7. Assign Clinical Priority
 a) Priority 1 — Critically ill or injured person requiring immediate attention; unstable
 patients with life-threatening injury or illness.
 b) Priority 2 — Less serious condition yet potentially life-threatening injury or illness, re-
 quiring emergency medical attention but not immediately endangering the patient’s
 life.
 c) Priority 3 — Non-emergent condition, requiring medical attention but not on an
 emergency basis.
 d) Priority 4 — Does not require medical attention.
 e) In the event of a multiple casualty incident, the Simple Triage And Rapid Treatment
 (START and/or JumpSTART) technique will be instituted for rapid tagging and sort-
 ing of patients into priority categories for both treatment and transport.
8. Normal Vital Signs Chart

<table>
<thead>
<tr>
<th>AGE</th>
<th>ESTIMATED WEIGHT</th>
<th>HEART RATE</th>
<th>RESPIRATORY RATE</th>
<th>SYSTOLIC B/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature</td>
<td>Less than 3 kg</td>
<td>160</td>
<td>Greater than 40</td>
<td>60</td>
</tr>
<tr>
<td>Newborn</td>
<td>3.5 kg</td>
<td>130</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>3 mo.</td>
<td>6 kg</td>
<td>130</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>6 mo.</td>
<td>8 kg</td>
<td>130</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>1 yr.</td>
<td>10 kg</td>
<td>120</td>
<td>26</td>
<td>90</td>
</tr>
<tr>
<td>2 yrs.</td>
<td>12 kg</td>
<td>115</td>
<td>26</td>
<td>90</td>
</tr>
<tr>
<td>3 yrs.</td>
<td>15 kg</td>
<td>110</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>4 yrs.</td>
<td>17 kg</td>
<td>100</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td>6 yrs.</td>
<td>20 kg</td>
<td>100</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>8 yrs.</td>
<td>25 kg</td>
<td>90</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>10 yrs.</td>
<td>35 kg</td>
<td>85</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>12 yrs.</td>
<td>40 kg</td>
<td>85</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>14 yrs.</td>
<td>50 kg</td>
<td>80</td>
<td>18</td>
<td>110</td>
</tr>
<tr>
<td>ADULT</td>
<td>Greater than 50 kg</td>
<td>80</td>
<td>18</td>
<td>120</td>
</tr>
</tbody>
</table>
HISTORY AND PHYSICAL EXAMINATION

TRAUMA PATIENT

<table>
<thead>
<tr>
<th>Significant MOI</th>
<th>Non-Significant MOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid Trauma Assessment</td>
<td>Determine Chief Complaint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Crepitation</td>
</tr>
<tr>
<td>A</td>
<td>Chest</td>
</tr>
<tr>
<td>P</td>
<td>Respiration</td>
</tr>
<tr>
<td>B</td>
<td>Paradoxical Motion</td>
</tr>
<tr>
<td>T</td>
<td>Breath Sounds</td>
</tr>
<tr>
<td>L</td>
<td>Abdomen</td>
</tr>
<tr>
<td>S</td>
<td>Rigidty</td>
</tr>
<tr>
<td>B</td>
<td>Distention</td>
</tr>
<tr>
<td>T</td>
<td>Pelvis/GU</td>
</tr>
<tr>
<td>L</td>
<td>Pain on Motion</td>
</tr>
<tr>
<td>S</td>
<td>Blood, Urine, Feces</td>
</tr>
<tr>
<td>E</td>
<td>Extremities</td>
</tr>
<tr>
<td>S</td>
<td>Pulse/Motor/Sensory</td>
</tr>
<tr>
<td>P</td>
<td>Posterior</td>
</tr>
</tbody>
</table>

Baseline Vital Signs

Obtain SAMPLE History

<table>
<thead>
<tr>
<th>Signs & Symptoms</th>
<th>Allergies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medications</td>
<td>Pertinent History</td>
</tr>
<tr>
<td>Last Oral Intake</td>
<td>Events Prior</td>
</tr>
</tbody>
</table>

Baseline Vital Signs

Obtain SAMPLE History

<table>
<thead>
<tr>
<th>Signs & Symptoms</th>
<th>Allergies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medications</td>
<td>Pertinent History</td>
</tr>
<tr>
<td>Last Oral Intake</td>
<td>Events Prior</td>
</tr>
</tbody>
</table>

MEDICAL PATIENT

<table>
<thead>
<tr>
<th>Unresponsive Patient</th>
<th>Responsive Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid Physical Examination</td>
<td>Obtain History of Episode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Neck</td>
</tr>
<tr>
<td>A</td>
<td>JVD</td>
</tr>
<tr>
<td>P</td>
<td>Medical Alert Device</td>
</tr>
<tr>
<td>B</td>
<td>Chest</td>
</tr>
<tr>
<td>T</td>
<td>Breath Sounds</td>
</tr>
<tr>
<td>L</td>
<td>Abdomen</td>
</tr>
<tr>
<td>S</td>
<td>Rigidity</td>
</tr>
<tr>
<td>B</td>
<td>Distention</td>
</tr>
<tr>
<td>T</td>
<td>Pelvis/GU</td>
</tr>
<tr>
<td>L</td>
<td>Blood, Urine, Feces</td>
</tr>
<tr>
<td>S</td>
<td>Extremities</td>
</tr>
<tr>
<td>S</td>
<td>MSP</td>
</tr>
<tr>
<td>B</td>
<td>Medical Alert Device</td>
</tr>
<tr>
<td>T</td>
<td>Posterior</td>
</tr>
</tbody>
</table>

Baseline Vital Signs

Obtain SAMPLE History

<table>
<thead>
<tr>
<th>Signs & Symptoms</th>
<th>Allergies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medications</td>
<td>Pertinent History</td>
</tr>
<tr>
<td>Last Oral Intake</td>
<td>Events Prior</td>
</tr>
</tbody>
</table>

Baseline Vital Signs

Obtain History of Episode

<table>
<thead>
<tr>
<th>Onset</th>
<th>Provocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>Radiation</td>
</tr>
<tr>
<td>Severity</td>
<td>Time</td>
</tr>
</tbody>
</table>

Focused Physical Exam

DCAPBTLS

Check areas suggested by MOI and SAMPLE.

Obtain SAMPLE History

CONSIDER ALS, PERFORM INTERVENTIONS, AND TRANSPORT.
Detailed and Ongoing Assessments

Detailed Examination

<table>
<thead>
<tr>
<th>Head</th>
<th>Ongoing Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalp & Cranium</td>
<td></td>
</tr>
<tr>
<td>Crepitation</td>
<td></td>
</tr>
<tr>
<td>Eyes</td>
<td></td>
</tr>
<tr>
<td>Discoloration</td>
<td></td>
</tr>
<tr>
<td>Equality</td>
<td></td>
</tr>
<tr>
<td>Foreign Bodies</td>
<td></td>
</tr>
<tr>
<td>Blood in Anterior Chamber</td>
<td></td>
</tr>
<tr>
<td>Ears & Nose</td>
<td></td>
</tr>
<tr>
<td>Fluid Drainage or Bleeding</td>
<td></td>
</tr>
<tr>
<td>Discoloration</td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td></td>
</tr>
<tr>
<td>Teeth & Foreign Bodies</td>
<td></td>
</tr>
<tr>
<td>Swelling or Lacerations</td>
<td></td>
</tr>
<tr>
<td>Breath Odor</td>
<td></td>
</tr>
<tr>
<td>Discoloration</td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td></td>
</tr>
<tr>
<td>Jugular Vein Distention</td>
<td></td>
</tr>
<tr>
<td>Trachea Position</td>
<td></td>
</tr>
<tr>
<td>Crepitation</td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td></td>
</tr>
<tr>
<td>Paradoxical Motion</td>
<td></td>
</tr>
<tr>
<td>Breath Sounds</td>
<td></td>
</tr>
<tr>
<td>Crepitation</td>
<td></td>
</tr>
<tr>
<td>Abdomen</td>
<td></td>
</tr>
<tr>
<td>Rigidity</td>
<td></td>
</tr>
<tr>
<td>Distention</td>
<td></td>
</tr>
<tr>
<td>Pelvis/GU</td>
<td></td>
</tr>
<tr>
<td>Pain on Motion</td>
<td></td>
</tr>
<tr>
<td>Extremities</td>
<td></td>
</tr>
<tr>
<td>Pulse, Motor, Sensory</td>
<td></td>
</tr>
<tr>
<td>Capillary Refill</td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
</tr>
</tbody>
</table>

Ongoing Assessment

Medical Patient

- **Repeat Initial Assessment**
 - Reassess AVPU
 - Reassess Airway
 - Monitor Breathing
 - Reassess Circulation
 - Monitor Skin
 - Confirm Clinical Priority

- **Repeat & Record Vital Signs**
 - Especially Chief Complaint or Injuries

- **Repeat Focused Assessment**
 - Especially Chief Complaint or Injuries

- **Check All Interventions**
 - Assure Oxygen Adequacy
 - Check Bleeding
 - Check Interventions
 - Check for Trending
 - Stable Pt.- Every 15 Min.
 - Unstable Pt.- Recommend Every 5 Min.

Trauma Patient

- **Repeat Initial Assessment**
 - Reassess AVPU
 - Reassess Airway
 - Monitor Breathing
 - Reassess Circulation
 - Monitor Skin
 - Confirm Clinical Priority

- **Repeat & Record Vital Signs**
 - Especially Chief Complaint or Injuries

- **Repeat Rapid Trauma Assessment**
 - Especially Chief Complaint or Injuries

- **Check All Interventions**
 - Assure Oxygen Adequacy
 - Check Bleeding
 - Check Neck Stabilization
 - Check Interventions
 - Check for Trending
 - Stable Pt.- Every 15 Min.
 - Unstable Pt.- Recommend Every 5 Min.

Consider ALS, Perform Interventions, and Transport.
Combined START/JumpSTART Triage Algorithm

Able to walk?
 YES → MINOR → SECONDARY TRIAGE*
 NO

Breathing?
 NO → POSITION UPPER AIRWAY → BREATHING → IMMEDIATE
 APNEIC
 ADULT
 NO PULSE
 PEDI
 + PULSE
 APNEIC

YES → 5 RESCUE BREATHS → BREATHING → IMMEDIATE

Respiratory Rate
 >30 ADULT → IMMEDIATE
 <30 ADULT
 <15 OR >45 PEDI → IMMEDIATE
 15-45 PEDI

Perfusion
 CR > 2 sec (ADULT) → IMMEDIATE
 NO PALPABLE PULSE (PEDI)

Mental status
 DOESN'T OBEY COMMANDS (ADULT)
 OBEYS COMMANDS (ADULT)
 "K", "V' OR "P" (APPROPRIATE) (PEDIATRIC)
 "P" (INAPPROPRIATE) POSTURING OR "U"

* Using the JS algorithm, evaluate first all children who did not walk under their own power.
E. HISTORY AND PHYSICAL EXAMINATION/ASSESSMENT

1. Conduct a Focused Examination/Detailed Examination/Ongoing Assessment.

2. Collect and transport documentation related to patient’s history (example: Emergency Information Form, Medic Alert, EMS DNR/MOLST, or jurisdictional form).

3. Clinicians should obtain and document a contact telephone number for one or more individuals who have details about the patient’s medical history so that the physician may obtain and validate additional patient information.

4. Obtain an EKG when appropriate.

ALL HEALTH CARE CLINICIANS ARE OBLIGATED BY LAW TO REPORT CASES OF SUSPECTED CHILD OR VULNERABLE ADULT ABUSE AND/OR NEGLECT TO EITHER THE LOCAL POLICE OR ADULT/CHILD PROTECTIVE SERVICE AGENCIES. DO NOT INITIATE REPORT IN FRONT OF THE PATIENT, PARENT, OR CAREGIVER (MD CODE, FAMILY LAW, § 5-704). UNDER MARYLAND LAW, EMS CLINICIANS ARE PROTECTED FROM LIABILITY IF THEY MAKE A REPORT OF CHILD/VULNERABLE ADULT ABUSE AND NEGLECT IN GOOD FAITH (COURTS AND JUDICIAL PROCEEDINGS ARTICLE § 5-620).

F. TREATMENT PROTOCOLS

1. Refer to ALL appropriate protocols.

2. Patients who have had an impaled conducted electrical weapon used on them will be transported to the nearest appropriate facility without dart removal (exception: Tactical EMS). ANY conducted electrical weapon dart impalement to the head, neck, hands, feet, or genitalia must be stabilized in place and evaluated by a physician. An assessment must be conducted to determine if the patient meets Excited Delirium Syndrome.

3. Clinicians may assist the patient or primary caregiver in administering the patient’s prescribed rescue medication.
 a) BLS clinicians may assist with the administration of the patient’s fast-acting bronchodilator MDI and sublingual nitroglycerin.
 b) ALS clinicians may administer the patient’s prescribed benzodiazepine for seizures, Factor VIII or IX for Hemophilia A or B, or reestablish IV access for continuation of an existing vasoactive medication.
 c) Clinicians should obtain on-line medical direction to administer other prescribed rescue medications not specifically mentioned in The Maryland Medical Protocols for Emergency Medical Services (e.g., hydrocortisone (Solucortef) for adrenal insufficiency). The rescue medication must be provided by the patient or caregiver and the label must have the patient’s name and the amount of medication to be given.

DO NOT ADMINISTER ORAL MEDICATIONS (EXCEPT GLUCOSE PASTE) TO PATIENTS WITH AN ALTERED MENTAL STATUS.
4. For pediatric patients
 a) Pediatric section of the treatment protocol will be used for children who have not reached their 15th birthday (trauma) or their 18th birthday (medical), except as otherwise stated in the treatment protocol.
 b) Medication dosing
 (1) Pediatric doses apply to patients weighing less than 50 kg.
 (2) For pediatric patients equal to or greater than 50 kg, utilize adult dosing.
 c) The developmental age of the infant/child must be considered in the communication and evaluation for treatment.
 Destination consideration:
 For those patients who are 18 years of age or older who receive specialized care at a pediatric facility, consider medical consultation with a Pediatric Base Station for patient destination.
 d) Infants and children must be properly restrained prior to and during transport.
 e) A parent/guardian/care taker may remain with a pediatric patient during transport, but must be secured in a separate vehicle restraint system at all times during transport.
G. COMMUNICATIONS

1. Communications with and through EMRC/SYSCOM are recorded. In addition, as part of the quality assurance and quality improvement process, communications with hospitals are frequently recorded. Therefore, you should assume that all your communications among EMS clinicians, hospitals, public safety communications centers, and EMRC/SYSCOM are being recorded.

ANY PATIENT WHOM THE CLINICIAN IDENTIFIES AS MEETING ANY “SPECIALTY” ALERT (E.G., TRAUMA, STEMI ALERT, STROKE ALERT, SEPSIS ALERT) REQUIRES A HOSPITAL NOTIFICATION, AND WHEN INDICATED BY PRIORITY OR NEED FOR INTERVENTION WILL HAVE ONLINE MEDICAL CONSULTATION THROUGH EMRC ON A RECORDED LINE (RADIO OR PHONE).

2. All Priority 1 patients require online medical consultation through EMRC on a recorded line (radio or phone).

3. All Priority 2 patients who need further therapeutic intervention(s) that require online medical consultation approval shall perform on-line medical consultation through EMRC on a recorded line (radio or phone).

4. For Priority 2 patients who have persistent symptoms but who do not need therapeutic intervention(s) requiring on-line medical consultation approval, clinicians shall notify the receiving facility with an “information only call” through EMRC on a recorded line (radio or phone).

5. For Priority 2 patients whose symptoms have resolved and Priority 3 patients whose vital signs are within normal limits, notification may be made through EMRC on a recorded line (radio or phone) or through an EOC/EMS communication system in accordance with the standard operating procedures of the local jurisdiction.

ONLINE MEDICAL CONSULTATION MAY BE OBTAINED AT ANY TIME FOR ANY PATIENT, IF DESIRED BY THE PREHOSPITAL EMS CLINICIAN. PEDIATRIC AND SPECIALTY CONSULTATION IS ENCOURAGED FOR TRAUMA AND MEDICAL PATIENTS. CONSULTATION WITH PEDIATRIC AND SPECIALTY CENTERS SHALL OCCUR SIMULTANEOUSLY WITH A BASE STATION CONSULT.

6. If medical consultation is genuinely unavailable, or if the time necessary to initiate consultation significantly compromises patient care, the clinician shall proceed with additional protocol directed care, so long as transport will not be significantly delayed. “Exceptional Call” must be indicated on the Patient Care Report (PCR).

7. Core essentials for communications:
 a) Assigned patient priority (1 to 4)
 b) Age
 c) Chief complaint
 d) Clinician impression
 e) Pertinent patient signs and symptoms (e.g., HR, RR, BP, Pulse Ox, and GCS) (be specific—do not use within normal limits or stable in description)
 f) Pertinent physician findings
 g) ETA
In addition, for specialty center patients:

Trauma

h) Patient Trauma Decision Tree Category (Alpha, Bravo, Charlie, Delta)

i) Number of victims if more than one

j) Describe mechanism

Stroke

k) Last known well time

l) Specific neurological findings (sensory, motor, cognitive)

m) Upon positive assessment using the Cincinnati Stroke Scale, a STROKE alert shall be made and the LAMS score will be included in the consult.

STEMI

n) 12-Lead interpretation

o) Duration of symptoms

CONSIDER ACTIVATION OF THE GO-TEAM FOR SERIOUSLY INJURED PATIENTS WHO REQUIRE A PROLONGED EXTRICATION AND WHO MEET THE INDICATIONS FOR GO-TEAM ACTIVATION.

8. Mass Casualty Incident (MCI) Communications

 a) When a local jurisdiction declares an MCI, it is extremely important to maximize patient care resources and reserve EMS communications for emergent situations. Except for extraordinary care interventions, EMS clinicians may perform all skills and administer medications within protocol during a declared MCI. When the MCI condition is instituted, the Exceptional Call box must be checked on the PCR.

 b) During an MCI, the EMS Officer-in-Charge (OIC) shall designate an EMS Communicator who shall establish appropriate communications.

 c) Reference the Multiple Casualty Incident/Unusual Incident Protocol.

H. REASSESSMENT

1. Reassess unstable patients frequently (recommended every 5 minutes).

2. Reassess stable patients at a minimum of every 15 minutes.

3. Reassess patients being discharged to home or long-term care at the beginning and end of the transport or more frequently, at the clinician's discretion.
I. DISPOSITION

1. Destination
 a) Priority 1 patients shall be triaged according to Maryland Medical Protocols to the closest appropriate hospital-based emergency department, designated trauma, or designated specialty referral center. Critically unstable patients in need of immediate life-saving interventions that cannot be provided in the field shall, with the approval of EMS system medical consultation, be diverted to the closest facility (including freestanding emergency medical facility) capable of immediately providing those interventions.
 b) Priority 2 patients shall be triaged according to the Maryland Medical Protocols to the closest appropriate hospital-based emergency department, designated trauma or designated specialty referral center unless otherwise directed by EMS system medical consultation. Stable Priority 2 patients may be referred to a freestanding emergency medical facility.
 c) Stable Priority 3 or 4 patients who do not need a time-critical intervention may be transported to the local emergency department or freestanding emergency medical facility.
 d) Patients Under Investigation (PUI) for an Emerging Infectious Disease (EID) at a residence should be transported directly to an Assessment Hospital unless total transport time is no longer than 45 minutes greater than transport to the nearest Frontline Hospital ED. If transport time is longer than 45 minutes greater than transport to the nearest Frontline Hospital ED, the patient must be transported to the closest appropriate Frontline hospital. Priority 1 and Priority 2 patients with unresolved symptoms that cannot be managed outside the hospital should be taken to the closest Frontline Hospital. Receiving hospital notification of all suspected PUI patients should be done as early as possible to allow for hospital staff to prepare. Helicopter transport is NOT indicated for the PUI patient.
 e) For Priority 2 and Priority 3 patients not meeting a specialty center destination care protocol, the EMS clinician should ask if the patient has had a hospital admission (inpatient service) within the last 30 days. If the answer is yes, the EMS clinician should transport (repatriate) the patient to that hospital as long as that hospital is not more than 15 additional minutes further than nearest hospital (or greater if allowed for by the EMS Operational Program).

2. Mode of transport (air, land, water)
 a) Medevac patients with indications for specialty referral center should be flown to the appropriate type of specialty center if not more than 10–15 minutes further than the closest trauma center. (Patients with an airway, breathing, or circulatory status who would be jeopardized by going an additional 10–15 minutes should go to the closest trauma center.)
 b) Consider utilization of a helicopter when the patient’s condition warrants transport to a trauma or specialty referral center and the use of a helicopter would result in a clinically significant reduction in time compared with driving to a trauma/specialty center.

ALL REQUESTS FOR SCENE HELICOPTER TRANSPORTS SHALL BE MADE THROUGH SYSCOM.
FOR TRAUMA DECISION TREE CATEGORY CHARLIE OR DELTA, RECEIVING TRAUMA CENTER MEDICAL CONSULTATION IS REQUIRED WHEN CONSIDERING WHETHER HELICOPTER TRANSPORT IS OF CLINICAL BENEFIT.

c) If the time of arrival at the trauma or specialty referral center via ground unit is less than 30 minutes, there will generally be no benefit in using the helicopter, especially for Trauma Decision Tree categories Charlie and Delta.
d) Refer to the Trauma Decision Tree when considering use of aeromedical transport. Provide SYSCOM with the patient’s category (Alpha, Bravo, Charlie, or Delta).
e) On-line medical direction should be obtained from the local trauma center and the specialty referral center when transport to the specialty center would require more than 10–15 minutes additional transport time.
 (1) Pediatric Trauma Patients: Indications as per the pediatric section of the Trauma Protocols.
 (2) Spinal Trauma Patients: Indications as per Spinal Protection Protocol.
 (3) Burn Patients: Indications as per Burn Protocol. Special note: Isolated burn patients without airway injury or other associated trauma should normally be flown to a burn center, regardless of the location of the closest trauma center.
 (4) Hand Injury Patients: Indications as per Hand Trauma Protocol. Special note: Medevac patients with appropriate indications for hand center referral should normally be flown to the hand center, regardless of the location of the closest trauma center.

3. Status
 Evaluate the need for emergent versus non-emergent transportation.

DO NOT WAIT ON-SCENE FOR ADVANCED LIFE SUPPORT. ATTEMPT TO RENDEZVOUS EN ROUTE TO THE HOSPITAL.
J. TRANSFER OF CARE/RENDEZVOUS AND TRANSITION OF PATIENT CARE ALS TO BLS
The ALS clinician-patient relationship is established when the ALS clinician initiates patient assessment and
1. ALS medication(s)* is/are administered or
2. ALS procedure(s)* is/are performed or
3. Upon ALS clinician assessment of the patient there is potential risk of deterioration.

* Based on the medication or procedure as listed in the protocol pages 182–185
ALS clinicians may only terminate their EMS clinician-patient relationship when they are assured that the patient will continue to receive care at the same or greater levels, or when they have documented with on-line medical direction that the patient’s condition has improved and that patient care may be transferred safely to an EMS clinician with a lower scope of practice.

BLS clinicians have the right to decline the transition of patient care. When consensus between the clinicians cannot be gained, ALS shall get on-line medical direction.

Clinicians will relay assessment findings and treatment provided to the individual(s) assuming responsibility for the patient(s). Should an ALS clinician perform an EKG (of any type), it shall be imported into the patient care report and a copy shall be sent with the BLS unit to the receiving facility. (NEW ’20)

K. DOCUMENTATION
A Patient Care Report (PCR) will be completed and delivered to the receiving facility as soon as possible, ideally upon transfer of care. If this is not immediately possible, clinicians must provide documentation of the patient’s prehospital care on a template and in a format provided or approved by MIEMSS for inclusion in the patient care record before leaving the receiving facility, then deliver the completed PCR within 24 hours after dispatch, in compliance with COMAR 30.03.04.04.

Only the unit that pronounces death will select the “Dead on Scene” option in the PCR (eMEDS®) and thus all other units will report “Operational Support Only.” If no interventions are performed, the highest level EMS clinician on scene will pronounce death and document “Dead on Scene.” If BLS care was rendered by a BLS unit and then termination of resuscitation and pronouncement of death occurred, the BLS unit will select “Dead at Scene with BLS Intervention” option on the eMEDS® PCR. If ALS care was rendered by an ALS unit and then termination of resuscitation and pronouncement of death occurred, the ALS unit will select “Dead at Scene with ALS Intervention” option on the eMEDS® PCR.

L. CONFIDENTIALITY
Patient confidentiality must be maintained at all times.

M. PROFESSIONAL CONDUCT
All patients should be treated with dignity and respect in a calm and reassuring manner.
III. TREATMENT PROTOCOLS

FOR ALL TREATMENT PROTOCOLS, THE LETTER AND NUMERICAL OUTLINE FORMAT IS STRICTLY FOR RAPID AND UNIFORM REFERENCE AND DOES NOT IMPLY OR DIRECT A MANDATORY SEQUENCE FOR PATIENT CARE.

HOWEVER, THE GENERAL PATIENT CARE SECTION AND THE ALGORITHMS DO HAVE A SPECIFIC SEQUENCE TO BE FOLLOWED.

A. ABUSE/NEGLECT

ALL HEALTH CARE CLINICIANS ARE OBLIGATED BY LAW TO REPORT CASES OF SUSPECTED CHILD OR VULNERABLE ADULT ABUSE OR NEGLECT TO EITHER THE LOCAL POLICE OR SOCIAL SERVICE AGENCIES. DO NOT INITIATE REPORT IN FRONT OF THE PATIENT, PARENT, OR CAREGIVER.

DO NOT CONFRONT OR BECOME HOSTILE TO THE PARENT OR CAREGIVER.

1. Inclusion Criteria
 The patient may present with patterned burns or injuries suggesting intentional infliction, such as injuries in varying stages of healing, injuries scattered over multiple areas of the body, fractures, or injuries inconsistent with stated cause of injury. The patient, parent, or caregiver may respond inappropriately to the situation. Malnutrition or extreme lack of cleanliness of the patient or environment may indicate neglect. Signs of increased intracranial pressure (bulging fontanels and altered mental status in an infant) may also be seen.

2. Treatment
 a) Stabilize injuries according to protocol.
 b) Discourage patient from washing if sexual abuse is suspected.
 c) Document the following information on the PCR:
 (1) All verbatim statements made by the patient, the parent, or caregiver shall be placed in quotation marks, including statements made about the manner of the injuries.
 (2) Any abnormal behavior of the patient, parent, and/or caregiver
 (3) The condition of the environment and other residents present
A. ABUSE/NEGLECT (Continued)

(4) The time the police/welfare agency was notified and the name of the person notified

(5) The name of the receiving health care clinician (RN, PA, MD) and any statements made

d) Treat injuries according to presentation.
B. ALTERED MENTAL STATUS: SEIZURES

1. Inclusion Criteria
 Seizures are a neuromuscular response to an underlying cause such as: epilepsy, hypoxia, hypoglycemia, hypoperfusion, head injury, CVA, alcohol or drug abuse. Consider recent history of possible illness, infection, fever, or stiff neck.

 Alert
 DO NOT ATTEMPT TO FORCE ANY DEVICE INTO THE PATIENT’S MOUTH IF THE PATIENT IS STILL SEIZING.

2. Treatment
 a) If the patient is still seizing:
 (1) DO NOT RESTRAIN.
 (2) Protect from further injury.
 (3) Consider underlying cause of seizure.
 b) When seizure activity has stopped:
 (1) Identify and treat injuries.
 (2) If patient is a known diabetic, glucose paste (10–15 grams) should be administered between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.
 (3) Use glucometer and treat accordingly.
 (4) Consider midazolam.
 (1) If patient has no IV or IO in place or IV/IO is not available: Administer midazolam 5 mg IN or IM.
 (2) If IV/IO is already in place: 0.1 mg/kg in 2 mg increments SLOW IVP/IO over 1–2 minutes per increment with maximum single dose 5 mg.

 Alert
 REDUCE BY 50% FOR PATIENTS 69 YEARS OR OLDER.

 (3) Additional doses up to a maximum total dose of 10 mg require medical consultation for all clinicians.
 (4) If patient seizures are refractory to treatment, consider IO administration of midazolam.
 (5) If midazolam is not available, consider diazepam in 2.5 mg increments SLOW IVP/IM. Maximum total dose 10 mg. If patient is in status, consider IO administration of diazepam.
 (a) IM administration requires all clinicians to obtain medical consultation. If suspected severe nerve agent exposure, clinicians may administer midazolam 5 mg IM or diazepam (CANA) without medical consultation.
 (6) Establish IV/IO access with LR.
 (7) If patient is pregnant, actively seizing, consider magnesium sulfate 4 grams IV/IO over 10 minutes (mixed in 50–100 mL of approved diluent).
 (a) If seizures persist, consult for second dose of magnesium sulfate.
B. ALTERED MENTAL STATUS: SEIZURES (Continued)

IF PATIENT IS PREGNANT, USE MIDAZOLAM FOLLOWED BY MAGNESIUM SULFATE. MEDICAL
CONSULTATION REQUIRED FOR PREGNANT PATIENTS WHO MAY REQUIRE LARGER DOSES OF
MIDAZOLAM TO CONTROL SEIZURES.

IF FOLLOWING ADMINISTRATION OF MAGNESIUM SULFATE, PATIENT EXHIBITS SIGNS OF
TOXICITY, CONSIDER ADMINISTRATION OF CALCIUM CHLORIDE. CONSIDER CALCIUM
CHLORIDE 500 MG IVP FOR RESPIRATORY DEPRESSION, DECREASED REFLEXES, FLACCID
PARALYSIS, AND APNEA FOLLOWING MAGNESIUM SULFATE ADMINISTRATION. MEDICAL
CONSULTATION REQUIRED.

e) If the patient is still seizing:
 (1) DO NOT RESTRAIN.
 (2) Protect from further injury.
 (3) Consider underlying cause of seizure.

f) When seizure activity has stopped:
 (1) Identify and treat any injuries.
 (2) If patient is a known diabetic, glucose paste (10–15 grams) should be ad-
 ministered between the gum and cheek. Consider single additional dose of
 glucose paste if not improved after 10 minutes.

 g) Use glucometer and treat accordingly.
 h) ALS clinicians may assist patients with the administration of their prescribed
 benzodiazepine.
 i) Consider midazolam for seizures lasting greater than 10 minutes.
 (1) If patient has no IV or IO in place or IV/IO is not available: Administer
 midazolam 0.2 mg/kg IN or IM. Maximum total dose 5 mg.
 (2) If IV or IO is already in place: Administer midazolam 0.1 mg/kg in 2 mg
 increments SLOW IVP over 1–2 minutes. Maximum total dose 5 mg.

FOR A CHILD ACTIVELY SEIZING, ADMINISTER MIDAZOLAM IN/IM AND RESERVE IO FOR LIFE-
THREATENING ILLNESS

 (3) Additional doses of midazolam up to a maximum total dose of 5 mg
 require medical consultation for all clinicians.
 (4) If patient’s seizures are refractory to treatment, consider IO administration of
 midazolam.
 (5) If midazolam is not available, consider diazepam for seizures lasting greater
 than 10 minutes (paramedic may perform without consult for patients with
 active seizures).
 (a) Up to 0.2 mg/kg diazepam rectal; maximum total dose 10 mg.
 OR
 0.1 mg/kg in 2.5 mg increments SLOW IVP/IO/IM; maximum total dose 5
 mg.
B. ALTERED MENTAL STATUS: SEIZURES (Continued)

(b) IM requires all clinicians to obtain medical consultation. If suspected severe nerve agent exposure, clinicians may administer midazolam as above or diazepam (CANA) without medical consultation.

(6) Establish IV/IO access with LR.

(7) If patient is pregnant, actively seizing, consider magnesium sulfate 4 grams IV/IO over 10 minutes (mixed in 50–100 mL of approved diluent).

(8) Administer fluid bolus, if appropriate, 20 mL/kg of LR IV/IO.
C. ALTERED MENTAL STATUS: UNRESPONSIVE PERSON

1. Inclusion Criteria
 Patients may exhibit confusion, focal motor sensory deficit, unusual behavior, unresponsiveness to verbal or painful stimulus.

 ALCOHOL CAN CAUSE ALTERED MENTAL STATUS BUT IS NOT COMMONLY A CAUSE OF TOTAL UNRESPONSIVENESS TO PAIN.

2. Treatment
 a) Obtain pulse oximetry, if available.

 b) Administer glucose paste (10–15 grams) between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.

 c) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, **OR** administer 4 mg/0.1 mL IN in one nare.

 d) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
 Administer naloxone 0.4–2 mg IVP/IO (titrated)/IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); **OR** administer 4 mg/0.1 mL IN in one nare. Repeat as necessary to maintain respiratory activity.

 e) Establish IV access with LR.
 Administer fluid bolus, if appropriate.
 20 mL/kg of LR IV

 f) Titrate to a systolic pressure of 90 mmHg.

 g) Consider obtaining blood sample using closed system.

 h) Use glucometer and treat accordingly.

 i) Consider an additional dose of naloxone.

 j) **Consider additional fluid administration**
 Maximum 2,000 mL without medical consultation.
C. ALTERED MENTAL STATUS: UNRESPONSIVE PERSON (Continued)

k) Obtain pulse oximetry if available.

l) Administer glucose paste (10–15 grams) between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.

m) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, **OR** administer 4 mg/0.1 mL IN in one nare.

n) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
 Aged 28 days to adult: Administer 0.1 mg/kg IVP/IO (titrated)IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); **OR** administer 4 mg/0.1 mL IN in one nare.
 May be repeated as necessary to maintain respiratory activity. ET dose: 0.2–0.25 mg/kg.

o) Consider repeating naloxone.

p) Establish IV/IO access with LR.
 (1) If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO.
 If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR IV/IO.
 OR
 For volume-sensitive children administer initial fluid bolus of 10 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 10 mL/kg LR IV/IO.
 Volume-sensitive children include: neonates (birth to 28 days), children with congenital heart disease, chronic lung disease, or chronic renal failure.

 (2) Consider obtaining blood sample using closed system.

q) Use glucometer and treat accordingly.

r) Third and subsequent fluid boluses at 20 mL/kg IV/IO except in volume-sensitive children, then bolus at 10 mL/kg.
D. APPARENT LIFE-THREATENING EVENT (ALTE)

1. Inclusion Criteria
 An episode in an infant or child less than 2 years old that is frightening to the observer and is characterized by some combination of the following:
 a) Apnea (central or obstructive)
 b) Skin color change: cyanosis, erythema (redness), pallor, plethora (fluid overload)
 c) Marked change in muscle tone
 d) Choking or gagging not associated with feeding or a witnessed foreign body aspiration

 MOST PATIENTS WILL APPEAR STABLE AND EXHIBIT A NORMAL PHYSICAL EXAM UPON ASSESSMENT BY RESPONDING FIELD PERSONNEL. HOWEVER, THIS EPISODE MAY BE THE SIGN OF UNDERLYING SERIOUS ILLNESS OR INJURY. FURTHER EVALUATION BY MEDICAL STAFF IS REQUIRED AND IT IS ESSENTIAL TO TRANSPORT ALL PATIENTS WHO EXPERIENCED ALTE.

2. Treatment
 a) Perform an initial assessment utilizing the Pediatric Assessment Triangle.
 b) Obtain a description of the event including nature, duration, and severity.
 c) Obtain a medical history with emphasis on the following conditions:
 (1) Known chronic diseases
 (2) Evidence of seizure activity
 (3) Current or recent infections
 (4) Gastroesophageal reflux
 (5) Recent trauma
 (6) Medications (current or recent)
 d) Apply oxygen.
 e) Be prepared to assist with ventilation if this type of episode occurs again during transport.
 f) Assess environment for possible causes.
 g) Place patient on cardiac monitor.
 h) Consider establishing IV/IO access with LR.

 IF THE PARENT OR GUARDIAN REFUSES MEDICAL CARE OR TRANSPORT, Clinician SHALL CONTACT A PEDIATRIC BASE STATION PHYSICIAN.
E. BEHAVIORAL EMERGENCIES

1. Inclusion Criteria
 Behavior or actions that indicate the patient’s mental function is disturbed and may pose a threat to oneself or to others (suicide, threat of violence, or psychosis).

THE CLINICIAN SHOULD RECOGNIZE CRITICAL INCIDENT STRESS AS A STATE OF EMOTIONAL DISTRESS THAT DOES NOT NECESSARILY POSE A THREAT TO ONESELF OR OTHERS (E.G., DEATH IN THE FAMILY, BYSTANDERS AT A CRASH SCENE, OR REACTION TO VIOLENCE).

THE PREHOSPITAL CARE CLINICIAN SHOULD NOT BE PLACED IN ANY PHYSICAL JEOPARDY OR ASSUME ANY LAW ENFORCEMENT FUNCTIONS, ESPECIALLY WHEN WEAPONS AND/OR ACTS OF VIOLENCE ARE INVOLVED!

LAW ENFORCEMENT SHOULD BE REQUESTED ON ALL CALLS INVOLVING POTENTIALLY VIOLENT PATIENTS.

2. Treatment
 a) When considering the prehospital use of restraints, a law enforcement officer should apply the device and accompany the clinician and the patient in the ambulance.

 b) For interfacility transport, a physician order must be obtained for physical restraint.

 c) Implement SAFER model.

 (1) **Stabilize** the situation by containing and lowering the stimuli.

 (2) **Assess** and acknowledge the crisis.

 (3) **Facilitate** the identification and activation of resources (chaplain, family, friends, or police).

 (4) **Encourage** patient to use resources and take actions in their best interest.

 (5) **Recovery or referral**—leave patient in care of responsible person or professional or transport to appropriate facility.
E. BEHAVIORAL EMERGENCIES (Continued)

d) Establish IV access with LR, if appropriate.
e) Consider Chemical Restraint.
F. CARDIAC EMERGENCIES: NON-ARREST CARDIAC GUIDELINES

1. The following pertains to cardiac emergencies in patients who have a pulse. Several guidelines apply to all algorithms when assessing and treating cardiac patients. These guidelines are:
 a) When the patient’s condition changes, indicating the transition to a new treatment algorithm, the new treatment shall take into account prior therapy (e.g., previously administered medications).
 b) As BLS/ALS guidelines indicate, definitive airway control is preferable; if this can be achieved, along with other initial interventions, then the earlier, the better. However, electrical therapy is more important if the patient can be ventilated without intubation.
2. UNIVERSAL ALGORITHM FOR ADULT EMERGENCY CARDIAC CARE FOR BLS

Unresponsive Not Breathing

Pulse?

- YES
 - Support ventilation
 - ALS & transport

- NO
 - Begin CPR
 - Attach AED ASAP
 - Analyze shockable rhythm?
 - YES
 - Defibrillate 1 time
 - Resume CPR immediately for 2 minutes
 - NO
 - Resume CPR immediately for 2 minutes
3. UNIVERSAL ALGORITHM FOR ADULT EMERGENCY CARDIAC CARE FOR ALS

- Assess Responsiveness

 Not Responsive:
 - Call for Defibrillator
 - Assess Breathing

 Responsive:
 - Observe
 - Treat as Indicated

- Breathing

- Assess Circulation

 NO
 - If unconscious and no trauma, place in recovery position
 - Pulse

 YES
 - Oxygen as needed
 - VENTILATE as needed
 - Cardiac Monitor
 - Vital Signs
 - IV with LR
 - History & Physical
 - Detailed Assessment

 NO
 - Begin CPR

 YES
 - Electrical Activity?

 NO
 - GO TO ASYSTOLE ALGORITHM

 YES
 - VT/VF ALGORITHM

 GO TO PEA ALGORITHM

- GO TO TACHYCARDIA ALGORITHM

- GO TO BRADYCARDIA ALGORITHM

- Too Slow

- Too Fast

Edition Date August 1, 2020
Release Date September 14, 2020
4. UNIVERSAL ALGORITHM FOR PEDIATRIC
(GREATER THAN 1 HOUR AND LESS THAN 13 YEARS OF AGE)
EMERGENCY CARDIAC CARE FOR BLS
(If less than 1 hour old, refer to Newly Born Protocol)

Unresponsive
Not Breathing

Pulse?

YES

Oxygen as needed
VENTILATE as needed
Target ventilation rate = 12–20 bpm
Vital Signs
History & Physical
Detailed Assessment

ALS &
transport

NO

Begin CPR
Attach AED with pediatric capability
100-120 compressions/minute
100% oxygen

Analyze
shockable rhythm?

YES

Defibrillate 1 time
Resume CPR immediately for 2 minutes

NO

Resume CPR immediately for 2 minutes
UNIVERSAL ALGORITHM FOR PEDIATRIC
(GREATER THAN 1 HOUR AND LESS THAN 13 YEARS OF AGE)
EMERGENCY CARDIAC CARE FOR ALS
(If less than 1 hour old, refer to Newly Born Protocol)

Assess Responsiveness

Not Responsive:
Call for Defibrillator
Assess Breathing

Responsive:
Observe
Treat as Indicated

Assess Breathing

NO

Assess Circulation

NO

Begin CPR
Attach AED with pediatric capability
100-120 compressions/minute
100% oxygen

GO TO PEDIATRIC CARDIAC ARREST ALGORITHM

YES

If unconscious with adequate respiratory rate and effort and no trauma, place in recovery position

Assess Pulse

NO

Oxygen as needed
VENTILATE as needed
Target Ventilation Rate = 12-20 bpm
Cardiac monitor
Vital signs
IV with LR
History & Physical
Detailed Assessment

Suspected Cause

Altered Mental Status: See Protocol

Respiratory Distress
Allergic Reaction or Anaphylaxis: See Protocol, as appropriate
Asthma/COPD: See Protocol
Pulmonary Edema/CHF: See Protocol

Dysrhythmia

Too Slow

GO TO PEDIATRIC BRADYCARDIA ALGORITHM

Too Fast

GO TO PEDIATRIC TACHYCARDIA ALGORITHM
G. CARDIAC EMERGENCIES: BRADYCARDIA

1. Inclusion Criteria
 Patient may present with a slow heart rate and chest pain, shortness of breath, decreased level of consciousness, hypotension, hypoperfusion, pulmonary congestion, congestive heart failure, and/or acute myocardial infarction.

2. Treatment
 a) Place patient in position of comfort.

 b) Assess and treat for shock, if indicated.

 c) Continuously monitor airway and reassess vital signs every 5 minutes.

 d) Establish IV access with LR.

 e) If patient is hemodynamically unstable: initiate transcutaneous pacing (TCP).

 f) If TCP is unsuccessful or not available, administer atropine:
 0.5–1 mg IVP
 Atropine should be given in repeat doses in 3–5 minute intervals up to a total of 0.04 mg/kg.

 g) Consider epinephrine infusion at 1 mL/min (60 drops/min) using approved epinephrine infusion. If using an infusion pump, the epinephrine dose is 2-10 mcg/min.
 Further dosing with medical consultation.

 h) If patient is hemodynamically stable and in Type II, second-degree AV Block or third-degree AV Block:
 (1) Consider/prepare for TCP.

 (2) If patient develops discomfort with TCP
 Administer opioid per Pain Management Protocol.
 OR
 Consider midazolam 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment with maximum single dose 5 mg.
 (Reduce by 50% for patients 69 years or older.)

 i) Refer to appropriate algorithm.
(a) - Serious signs and symptoms must be related to the slow rate. Signs and symptoms may include chest pain, shortness of breath, decreased level of consciousness, hypotension, hypoperfusion, pulmonary congestion, CHF, and/or AMI.

(b) - Do not delay TCP while awaiting IV or atropine to take effect if the patient is symptomatic.

(c) - Denervated transplanted hearts will not respond to atropine. Go at once to TCP.

(d) - Atropine shall be given in repeat doses in 3–5 minute intervals up to a total of 0.04 mg/kg. Consider shorter intervals in severe clinical conditions. Medical consultation required to administer atropine in AV block at the His-Purkinje level (Type II AV block and new third-degree block with wide QRS complexes).

(e) - Never treat third-degree AV block or ventricular escape beats with amiodarone.

(f) - In the presence of Mobitz II and third-degree AV block, medical consultation is required for atropine administration.

(g) - Additional dosing above 1 mL/min (1 drop/second using 60 drop set and approved epinephrine infusion) requires medical consultation. Adults: titrate to systolic BP 90 mmHg.
6. **PEDIATRIC BRADYCARDIA ALGORITHM**

 (If less than 1 hour old, refer to Newly Born Protocol)

 ![Diagram of Bradycardia Algorithm]

 Identify and treat underlying causes

 Hemodynamically unstable? (a)

 NO

 Observe
 Support ABCs

 YES

 Begin CPR if HR less than 60 with poor perfusion despite oxygenation and ventilation

 Bradycardia persists?

 NO

 Epinephrine (b)
 IV/IO 0.01 mg/kg (1:10,000)
 ET 0.1 mg/kg (1:1000),
 Dilute in 5 mL;
 Repeat every 3–5 minutes

 Atropine
 IV/IO 0.02 mg/kg,
 Maximum single dose 0.5 mg,
 ET 0.04–0.06 mg/kg,
 Dilute in 5 mL
 Repeat once

 Consider Transcutaneous Pacing

 If pulseless arrest develops
 go to Cardiac Arrest Algorithm

 Possible causes of bradycardia
 (Parenthesis) = Possible Therapies and Treatments

 - Hypovolemia (Volume Infusion) (c)
 - Hypoxia (Ventilation)
 - Hydrogen ion (acidosis) (d)
 - Hypo-/hyperkalemia (d,e)
 - Hypoglycemia (Glucometer Protocol)
 - Hypothermia (Warming)
 - Toxins (d,e)
 - Tamponade, cardiac (NTD)
 - Tension pneumothorax
 - Thrombus
 - Trauma

 Pacer Age-Related Rates
 Start pacemaker at age-appropriate heart rate:
 - Infant (less than 1 year): 120 beats per minute
 - Child (1 through 12 years): 100 beats per minute
 - Adult/Adolescent (13 years and greater): 80 beats per minute

 (a) - Hemodynamically unstable is defined as a systolic blood pressure less than 60 in neonates (patients less than 28 days old), less than 70 in infants (patients less than 1 year of age), and less than \[70 + (2 \times \text{years}) = \text{systolic BP}\] for patients greater than 1 year of age.

 (b) - Neonates (birth to 28 days), epinephrine ET 0.03 mg/kg (1:10,000) dilute with 1 mL.

 (c) - Volume infusion for neonates and volume-sensitive children, 10 mL/kg; for infant and child 20 mL/kg.

 (d) - Sodium Bicarbonate, 1 mEq/kg with medical consultation. See sodium bicarbonate.

 (e) - Calcium chloride, 20 mg/kg (0.2 mL/kg) SLOW IVP/IO (50 mg/min). Max dose 1 gram.
H. CARDIAC EMERGENCIES: TACHYCARDIA

1. Inclusion Criteria
 Patient may present with chest pain, shortness of breath, decreased level of consciousness, low blood pressure, hypoperfusion, pulmonary congestion, congestive heart failure, and/or acute myocardial infarction.

2. Treatment
 a) Place patient in position of comfort.
 b) Assess and treat for shock, if indicated.
 c) Continuously monitor airway and reassess vital signs every 5 minutes.
 d) Establish IV access with LR.
 e) Verify presence of pulse.
 f) If no pulse present, treat as pulseless VF/VT.
 g) If patient is hemodynamically unstable with a ventricular rate greater than 150, prepare for immediate cardioversion.
 h) If patient is hemodynamically stable, identify rhythm and proceed to appropriate algorithm.
 i) Place patient in position of comfort.
 j) Assess and treat for shock, if indicated.
 k) Continuously monitor airway and reassess vital signs every 5 minutes.
 l) Establish IV access with LR.
 m) Verify presence of pulse.
 n) If no pulse present, treat as pulseless VF/VT.
H. CARDIAC EMERGENCIES: TACHYCARDIA (Continued)

 o) If patient is hemodynamically unstable with a ventricular rate greater than 220 for an infant or 180 for a child, prepare for immediate cardioversion.

 p) If patient is hemodynamically stable, identify rhythm and proceed to appropriate algorithm.
(a) - Signs and symptoms related to tachycardia: hypotension, acutely altered mental status, signs of shock, ischemic chest discomfort/AMI, or acute heart failure
(b) - Consider sedation (midazolam). However, overall patient status, including BP, may affect ability to administer sedative.
(c) - Consider calcium chloride 500 mg IVP for hypotension induced by diltiazem.
(d) - If rate does not slow in 15 minutes, administer a second dose of diltiazem (15–25 mg over 2 minutes).
(e) - Be prepared for up to 40 seconds of asystole.
(f) - These rhythms include Wolff-Parkinson White (WPW) syndrome, Lown–Ganong–Levine syndrome (LGL), and Mahaim type.
6. PEDIATRIC TACHYCARDIA ALGORITHM

(If less than 1 hour old, refer to the Newly Born Protocol)

- Identify and treat underlying causes
- Evaluate QRS duration

Narrow (less than or equal to 0.09 seconds)
- Probable sinus tachycardia
- Probable supraventricular tachycardia (a)
- Identify and treat underlying cause
- Consider vagal maneuvers
- Consider (c) (d) cardioversion

Wide regular (greater than 0.09 seconds)
- Possible VT (g)
- Hemodynamically unstable? (b)
- YES
 - Cardiovert 0.5 J/kg (c) (d)
 - Cardiovert 1 J/kg
 - Cardiovert 2 J/kg
 - IV/IO access
 - Amiodarone (f)
- NO
 - Consider adenosine (e)

(a) - Ventricular Heart Rates in excess of: Infant 220 bpm or Pediatric 180 bpm
(b) - Hemodynamically unstable is defined as a systolic blood pressure less than 60 in neonates (patients from birth to 28 days old), less than 70 in infants (patients less than 1 year of age), less than \([70 + (2 \times \text{years}) = \text{systolic BP}]\) for patients greater than 1 year of age, altered mental status with hypoperfusion evidenced by delayed capillary refill, pallor, or peripheral cyanosis.

(c) - If calculated joules setting is lower than cardioversion device is able to deliver, use the lowest joules setting possible or obtain medical consultation.
(d) - Consider sedation (midazolam with medical consultation). However, overall patient status, including BP, may affect ability to administer sedative.
(e) - Adenosine: 0.1 mg/kg rapid IV/IO, maximum 6 mg. Second and third doses 0.2 mg/kg rapid IV/IO, maximum single dose 12 mg. Be prepared for up to 40 seconds of asystole. (Contraindicated in polymorphic or irregular wide complex tachycardia)
(f) - Amiodarone: 5 mg/kg IV/IO over 20 minutes (mixed in 50 - 100 mL of approved diluent). Obtain 12-lead EKG prior to administration of amiodarone.
(g) - If torsades de pointes, administer magnesium sulfate (25 mg/kg IV/IO to a maximum of 2 grams over 2 minutes).
I. CARDIAC EMERGENCIES: CARDIAC ARREST

1. Inclusion Criteria
 Patient must be unconscious, apneic, and pulseless.

2. Treatment
 a) Perform high quality uninterrupted chest compressions as soon as possible and until defibrillator available.
 b) Apply AED as soon as available.
 c) Follow machine prompts regarding rhythm analyses and shocks.
 d) Limit breaks in compressions to rhythm analysis periods and during shocks; perform compressions while defibrillator is charging.

 ALERT
 ALS CLINICIANS WITH A COMBINATION AED/MANUAL DEFIBRILLATOR SHOULD USE IT IN THE
 MANUAL MODE TO MINIMIZE BREAKS IN COMPRESSIONS CAUSED BY AED ANALYSIS.

 e) On-scene resuscitation: patients who are found in arrest or who arrest prior to transport and are attended to by BLS clinicians must only be resuscitated in place (with minimal movement, no attempts at patient loading, and no attempts at transport) until the following have been accomplished:
 (1) Medical Etiologies
 (a) The patient has received a minimum of five two-minute cycles of rhythm interpretation and chest compressions.
 (2) Trauma Etiologies
 (a) Penetrating trauma patients should receive the indicated reversible causes treatments listed in section BBB–Trauma Protocol: Trauma Arrest, lines a) through h) of Treatment, while loading and preparing for immediate transport.
 (b) Blunt trauma patients should receive all indicated reversible causes treatments listed in section BBB–Trauma Protocol: Trauma Arrest, lines a) through h) of Treatment, while on scene before termination of resuscitation or transport if ROSC is achieved.
 (3) Exemptions from on-scene resuscitation:
 (a) Where physical barriers prevent resuscitation
 (b) Where clinicians are in danger
 (c) Pregnant patients
 (d) Patients in cardiac arrest thought to be secondary to hypothermia or submersion
 f) Following the initial on-scene resuscitation above, clinicians may choose to continue the on-scene resuscitation until termination of resuscitation or to transport the patient at any time. Clinicians should ensure the following prior to transport:
 (1) Mechanical CPR (mCPR) in place (if available)
I. CARDIAC EMERGENCIES: CARDIAC ARREST (Continued)

HIGH-QUALITY CONTINUOUS CHEST COMPRESSIONS WITH FREQUENT CLINICIAN ROTATION IS AN ESSENTIAL COMPONENT IN THE SUCCESSFUL RESUSCITATION OF THE CARDIAC ARREST PATIENT. THIS MAY BE ACCOMPLISHED ENTIRELY WITH MANUAL COMPRESSIONS, OR INITIALLY WITH MANUAL AND THEN MECHANICAL COMPRESSIONS, IN ACCORDANCE WITH THE OPTIONAL MECHANICAL CPR (MCPR) PROTOCOL. THE USE OF MCPR IS CONTRAINDICATED IN PATIENTS WHO HAVE NOT YET REACHED THEIR 13TH BIRTHDAY.

- g) Assess for shockable rhythm at next appropriate interval and treat appropriately.
- h) Minimize peri-shock pauses of compressions to less than 10 seconds.
- i) Any interruption of chest compressions, at any time for any reason, should last no more than 10 seconds.
- j) 10-second interruptions should coincide with two-minute cycles of chest compressions.
- k) On-scene resuscitation: patients who are found in arrest or who arrest prior to transport and are attended to by ALS clinicians must remain in place (with minimal movement, no attempts at patient loading, and no attempts at transport) until the following have been accomplished:
 1. Medical Etiologies
 a) The patient has received three doses of epinephrine, regardless of algorithm being followed.
 2. Trauma Etiologies
 a) Penetrating trauma patients should receive the indicated reversible causes treatments listed in section BBB–Trauma Protocol: Trauma Arrest, lines a) through h) of Treatment, while loading and preparing for immediate transport.
 b) Blunt trauma patients should receive all indicated reversible causes treatments listed in section BBB–Trauma Protocol: Trauma Arrest, lines a) through h) of Treatment, while on scene before termination of resuscitation or transport if ROSC is achieved.
 3. Exemptions from on-scene resuscitation:
 a) Where physical barriers prevent resuscitation.
 b) Where clinicians are in danger.
 c) Pregnant patients.
 d) Patients in cardiac arrest thought to be secondary to hypothermia or submersion.
- l) Following the initial on-scene resuscitation above, clinicians may choose to continue the on-scene resuscitation until termination of resuscitation or to transport the patient at any time. Clinicians should ensure the following prior to transport:
 1. Mechanical CPR (mCPR) in place (if available).
 2. Placement of an airway that facilitates ventilation during transport by a restrained clinician.
- m) Identify rhythm and treat according to appropriate algorithm.
- n) When the patient’s condition changes, indicating the transition to a new treatment algorithm, the new treatment shall take into account prior therapy (e.g., previously administered medications).
- o) If ROSC, refer to ROSC Protocol.
- p) Consider Termination of Resuscitation when appropriate.
I. CARDIAC EMERGENCIES: CARDIAC ARREST (Continued)

For patients who have not reached their 18th birthday:

q) Identify rhythm and treat according to appropriate algorithm.

r) Only in a pediatric or neonatal arrest situation, naloxone, atropine, and epinephrine, can be administered via the ET route. Medications administered for pediatric patients via the endotracheal tube route shall be 2–2.5 times the IV dose for naloxone and atropine, and ten times the IV dose for epinephrine (1:1,000). All ET medications shall be diluted in 5 mL of LR for pediatric patients.

s) If no ROSC, transport to the closest appropriate facility.

t) If ROSC, perform 12-lead EKG and transport the patient to Children’s National Medical Center or Johns Hopkins Children’s Center by ground or medevac. If arrival time is greater than 30 minutes to either of these destinations, transport to the closest appropriate facility.
4. ADULT ASYSTOLE ALGORITHM

- Continue CPR
- Assure adequate ventilation
- Establish IV access with LR
- Confirm asystole in more than one lead

Epinephrine (1:10,000) 1 mg IV/IO push every 4 minutes up to a max of 4 doses for the initial arrest. If arrest occurs after ROSC, an additional 2 doses may be administered. (NEW ’20)

Consider Possible Causes

Consider possible causes of asystole.
(Parenthesis) = Possible Therapies and Treatments

<table>
<thead>
<tr>
<th>Condition</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypovolemia</td>
<td>(Volume Infusion) (c)</td>
</tr>
<tr>
<td>Cardiac Tamponade</td>
<td>(Volume Infusion) (c)</td>
</tr>
<tr>
<td>Tension Pneumothorax</td>
<td>(Needle Decompression Thoracostomy–NDT)</td>
</tr>
<tr>
<td>Massive Pulmonary Embolism</td>
<td></td>
</tr>
<tr>
<td>Massive AMI</td>
<td></td>
</tr>
<tr>
<td>Drug Overdose</td>
<td>(a,b)</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>(Ventilation)</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>(Warming)</td>
</tr>
<tr>
<td>Acidosis</td>
<td>(a)</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>(a,b)</td>
</tr>
</tbody>
</table>

(a) - Sodium bicarbonate 1 mEq/kg, with medical consultation. See sodium bicarbonate.

(b) - Calcium chloride, 0.5–1 gram IVP. See calcium chloride.

(c) - Volume infusion is 20 mL/kg.
5. PEDIATRIC CARDIAC ARREST ALGORITHM
(If less than 1 hour old, refer to the Newly Born Protocol)

- Begin CPR
 - Assure adequate ventilation
 - Attach monitor

VF/VT

Defibrillate 2 J/kg
Resume CPR immediately for 2 minutes

IV/IO Access

Defibrillate 4 J/kg
Resume CPR immediately for 2 minutes

Epinephrine (1:10,000) (b) 0.01 mg/kg IV/IO every 4 minutes up to a max of 4 doses for the initial arrest. If arrest occurs after ROSC, an additional 2 doses may be administered. (NEW '20)

Defibrillate 6 J/kg
Resume CPR immediately for 2 minutes. (NEW '20)

Amiodarone 5 mg/kg IV/IO (Max single dose 300 mg) May repeat twice to a maximum total dose of 15 mg/kg per day (a) (f)

Asystole/PEA

IV/IO Access

Epinephrine (1:10,000) (b) 0.01 mg/kg IV/IO every 4 minutes up to a max of 4 doses for the initial arrest. If arrest occurs after ROSC, an additional 2 doses may be administered. (NEW '20)

Consider possible causes

Consider possible causes of asystole. (Parenthesis) = Possible Therapies and Treatments

Hypovolemia (Volume Infusion) (e)
Hypoxia (Ventilation)
Hydrogen ion (acidosis) (c)
Hypo-/hyperkalemia (c,d)
Hypoglycemia (Glucometer Protocol)
Hypothermia (Warming)
Toxins (c,d)
Tamponade, cardiac
Tension pneumothorax (NDT)
Thrombus
Trauma

(a) - Continue cycle of epinephrine, defibrillation at 8 J/kg then 10 J/kg. (NEW '20)
(b) - Neonates (0–28 days), epinephrine ET 0.03 mg/kg (1:10,000) dilute with 1 mL.
(c) - Sodium bicarbonate, 1 mEq/kg, with medical consultation. See sodium bicarbonate.
(d) - Calcium chloride, 20 mg/kg (0.2 mL/kg) SLOW IV/IO (50 mg/min). Max dose 1 gram.
(e) - Volume infusion for neonates and volume-sensitive children, 10 mL/kg; for infant and child 20 mL/kg.
(f) - If torsades de pointes, administer magnesium sulfate (25 mg/kg IV/IO to a maximum of 2 grams over 2 minutes before amiodarone).
ADULT PULSELESS ELECTRICAL ACTIVITY (PEA) ALGORITHM

Includes:
- EMD
- Pseudo EMD
- Brady-asystolic Rhythms
- Idioventricular Rhythms
- Ventricular Escape Rhythms
- Post-defibrillation Idioventricular Rhythms

Continue CPR

Assure adequate ventilation

Consider Possible Causes

IV/IO with LR

Epinephrine (1:10,000) 1 mg IV/IO every 4 minutes up to a max of 4 doses for the initial arrest. If arrest occurs after ROSC, an additional 2 doses may be administered. (NEW '20)

Consider possible causes of PEA. (Parenthesis) = Possible Therapies and Treatments

- Hypovolemia (Volume Infusion) (c)
- Cardiac Tamponade (Volume Infusion) (c)
- Tension Pneumothorax (Needle Decompression Thoracostomy–NDT)
- Massive Pulmonary Embolism
- Massive AMI
- Drug Overdose (a,b)
- Hypoxia (Ventilation)
- Hypothermia (Warming)
- Acidosis (a)
- Hyperkalemia (a,b)

(a) - Sodium bicarbonate 1 mEq/kg, with medical consultation. See sodium bicarbonate.

(b) - Calcium chloride, 0.5–1 gram IVP. See calcium chloride.

(c) - Volume infusion is 20 mL/kg.
7. VENTRICULAR FIBRILLATION
PULSELESS VENTRICULAR TACHYCARDIA

Perform CPR and assure adequate ventilation
VF/VT present on monitor

Defibrillate 1 time
Resume CPR immediately
for 2 minutes

Confirm Rhythm

Persistent or Recurrent
VF/VT

Defibrillate 1 time
Resume CPR immediately
for 2 minutes

IV/IO with LR

Epinephrine (1:10,000) 1 mg IV/IO every 4 minutes
up to a max of 4 doses for
the initial arrest. If arrest
occurs after ROSC, an
additional 2 doses may be
administered. (NEW '20)

Defibrillate 1 time
Resume CPR immediately
for 2 minutes

Amiodarone
300 mg IV/IO push
May repeat once 150 mg
IV/IO push (a) (b)

Defibrillate 1 time
Resume CPR immediately
for 2 minutes

(a) Sodium bicarbonate 1 mEq/kg, with medical consultation. See sodium bicarbonate.

(b) If torsades de pointes is present, give magnesium sulfate 1–2 grams IV/IO over 2 minutes before amiodarone.
J. RETURN OF SPONTANEOUS CIRCULATION (ROSC)

1. Inclusion Criteria
 Patients revived from non-traumatic cardiac arrest.

2. Treatment
 a) Verify presence of carotid pulse. If absent, go to Cardiac Arrest Protocol.

 FREQUENTLY REASSESS FOR PRESENCE OF PULSE. IF ANY DOUBT AS TO PRESENCE OF
 PULSE, REINITIATE CHEST COMPRESSIONS AND RETURN TO APPROPRIATE ALGORITHM FOR
 CARDIAC ARREST.

 b) If apneic or inadequate respirations, continue to support ventilations. Use sup-
 plemental oxygen in accordance with General Patient Care (Breathing in Initial
 Assessment, page 28).

 c) Reassess vital signs. Treat any abnormalities in accordance with relevant
 algorithms.

 d) If patient is 18 years of age or older and comatose (GCS less than 8), initiate
 Neuroprotective Induced Hypothermia Protocol (Medical etiology arrest only).

 e) Rendezvous with ALS or transport to nearest ED.

 f) If available and not already in place, apply mechanical CPR (mCPR) device in
 standby mode.

 g) Identify rhythm and treat according to appropriate algorithm.

 h) Obtain 12-lead EKG; if STEMI, treat according to STEMI protocol.

 i) Establish IV/IO access, if not yet obtained.

 j) Treat hypotension
 (1) If lungs are clear, consider fluid bolus. 20 mL/kg LR IV. Titrate to SBP of
 90 mmHg.

 (2) Consider epinephrine infusion for hypotension that does not improve with
 fluid bolus (medical etiology arrests only)
 (a) Add 1 mg of epinephrine (either 1:1,000 or 1:10,000) in a 100 mL bag of
 LR or NS
 (b) Use a Microdrip set (60 drops/mL) for infusion administration
 (c) Adult epinephrine infusion dosage:
 (i) Administer infusion through a free-flowing IV, ideally 20 gauge or
 larger, or by IO
 (ii) Start infusion at 1 mL/min (60 drops/min) IV/IO
 (iii) Check blood pressure every 5 minutes. If MAP is less than 65 mmHg
 or systolic blood pressure is less than 90 mmHg, increase to a maxi-
 mum rate of 2 mL/min (120 drops/min).
 (iv) If above blood pressure goals are not met upon reaching maximum
 rate, obtain online medical consultation.

 (3) Reassess need for intubation if not yet performed.

 (4) Identify and treat contributing causes.
J. RETURN OF SPONTANEOUS CIRCULATION (ROSC) (continued)

k) If VF or VT was present during arrest and amiodarone not yet given, consider amiodarone 150 mg IV/IO over ten minutes. (Presence of a perfusing sinus rhythm is necessary for the administration of amiodarone for the ROSC patient post VF/VT conversion.)

l) Initiate transport to appropriate facility.

m) Arrests due to medical etiology:
 (1) Most patients should go to a Cardiac Interventional Center. Consider helicopter transport.
 (2) Transport to nearest ED.
 (a) If obvious non-cardiac cause for arrest (e.g., drowning, asphyxiation, opiate overdose). (If cause for arrest is in any way uncertain, patient must be transported to Cardiac Interventional Center, except as under b and c below.) OR
 (b) If transport time to Cardiac Interventional Center is more than 45 minutes greater than transport time to nearest ED OR
 (c) If patient’s clinical instability will not allow for safe transport to Cardiac Interventional Center due to transport time.

n) Arrests due to trauma etiology:
 (1) Transport to closest appropriate trauma center.

o) Treat hypotension
 (1) If lungs are clear, consider fluid bolus 20 mL/Kg LR IV. Titrate to blood pressure goals in (3) below.
 (2) For persistent hypotension that does not improve with fluid bolus, the following pediatric epinephrine infusion dosage chart should be used for pediatric patients less than 50 kg (using approved epinephrine infusion and 60 drop set):

<table>
<thead>
<tr>
<th>Weight range (kg)</th>
<th>Initial epinephrine dose</th>
<th>If goal blood pressure not achieved at 5 min, increase to</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS than 10 kg</td>
<td>6 drops/min (0.1 mL/min)</td>
<td>12 drops/min (0.2 mL/min)</td>
</tr>
<tr>
<td>10-19 kg</td>
<td>12 drops/min (0.2 mL/min)</td>
<td>24 drops/min (0.4 mL/min)</td>
</tr>
<tr>
<td>20-29 kg</td>
<td>18 drops/min (0.3 mL/min)</td>
<td>36 drops/min (0.6 mL/min)</td>
</tr>
<tr>
<td>30-39 kg</td>
<td>24 drops/min (0.4 mL/min)</td>
<td>48 drops/min (0.8 mL/min)</td>
</tr>
<tr>
<td>40-49 kg</td>
<td>30 drops/min (0.5 mL/min)</td>
<td>60 drops/min (1.0 mL/min)</td>
</tr>
</tbody>
</table>
J. RETURN OF SPONTANEOUS CIRCULATION (ROSC) (continued)

(3) Blood pressure goal:
 (a) For patients 10 years and older (including adults), systolic blood pressure greater than 90 mmHg;
 (b) For patients under 10 years of age, systolic blood pressure greater than \(70 + 2 \times \text{age in years}\) mmHg; OR
 (c) Systolic blood pressure ordered by the pediatric base station.

(4) If above blood pressure goal not met after 10 minutes, obtain online medical consultation.

p) Arrests due to medical etiology:
 (1) Except as under (2) below, most pediatric patients should be transported to Children’s National Medical Center or Johns Hopkins Children’s Center. Consider helicopter transport.
 (2) Transport to nearest ED.
 (a) If transport time to Children’s National Medical Center or Johns Hopkins Children’s Center is more than 30 minutes greater than transport time to nearest ED, OR
 (b) With medical consultation, if patient's clinical instability will not allow for safe transport to one of the above centers due to transport time.

q) Arrests due to trauma etiology:
 (1) Transport to closest appropriate pediatric trauma center.

ALL POST-CARDIAC ARREST PATIENTS ARE PRIORITY 1, AND REQUIRE MEDICAL CONSULTATION. PEDIATRIC PATIENTS REQUIRE CONSULTATION WITH A PEDIATRIC BASE STATION, WHICH MAY ASSIST IN DESTINATION DETERMINATION.
K. TERMINATION OF RESUSCITATION (Medical and Traumatic)

1. Inclusion Criteria
 Patients who are in cardiac arrest.

2. Contraindications
 a) If arrest is believed to be secondary to hypothermia or submersion, treat according to appropriate protocol and transport to the nearest appropriate facility.
 b) If patient is pregnant, treat according to appropriate protocol and transport to the nearest appropriate facility.

3. Procedure
 a) For resuscitation started prior to EMS arrival (traumatic or non-traumatic etiology):
 (1) EMS clinicians should terminate resuscitation if the patient meets the criteria listed in the Pronouncement of Death in the Field Protocol (section 2. Indications (a. – f.))
 b) BLS clinicians may terminate resuscitation for adult patients (age 18 or older) if:
 (1) ALS resources are genuinely unavailable, and
 (2) The patient has received a minimum of 15 two-minute cycles of HPCPR, and
 (3) During the five AED analyses immediately prior to TOR there was “no shock advised”.
 c) Cardiac arrest (medical etiology)
 (1) ALS clinicians may terminate resuscitation for:
 (a) An adult patient (age 18 or older) after the patient has received 15 two-minute cycles of HPCPR, and the patient is:
 (i) in asystole, OR
 (ii) in VF, pulseless VT, or PEA with an ETCO2 of less than 15 mmHg
 (b) If patient does not meet TOR criteria, continue resuscitation and reevaluate at the next rhythm check
 d) Cardiac arrest (traumatic etiology) (NEW '20)
 (1) For adult patient (age 15 years or older) ALS clinicians may terminate resuscitation regardless of total resuscitation time if:
 (a) The patient presents in asystole OR
 (b) The patient’s cardiac rhythm changes to asystole during the resuscitation
 (c) ALS clinicians may terminate resuscitation following 5 two-minute cycles of HPCPR according to the Trauma Protocol: Trauma Arrest Protocol for a patient who remains in PEA or VF

ASYSTOLE AND RESUSCITATIONS LASTING LONGER THAN 10 MINUTES ARE INDEPENDENT PREDICTORS OF MORTALITY IN THE TRAUMA PATIENT. TREATMENT OF THE TRAUMA ARREST PATIENT SHOULD FOCUS ON IDENTIFYING AND TREATING REVERSIBLE CAUSES DURING THAT NARROW RESUSCITATIVE WINDOW. TOR AND TRANSPORT DECISIONS SHOULD ONLY BE MADE AFTER ADMINISTERING TIME-SENSITIVE AND APPROPRIATE THERAPIES.
K. TERMINATION OF RESUSCITATION (Medical and Traumatic)
(Continued)

(NEW ’20)
BLS clinicians may not terminate resuscitation for pediatric medical arrest patients.

BLS clinicians may terminate resuscitation for pediatric traumatic arrest patients (under age 15) if:
(1) ALS resources are genuinely unavailable, and
(2) The patient has received a minimum of 15 two-minute cycles of HPCPR, and
(3) During the five AED analyses immediately prior to TOR there was "no shock advised".

(NEW ’20)

e) Cardiac arrest (medical etiology)
 (1) ALS clinicians may terminate resuscitation for:
 (a) A pediatric patient (has not yet reached the 18th birthday) after the patient has received 15 two-minute cycles of HPCPR, and at least 1 dose of epinephrine and the patient is:
 (i) in asystole, AND
 (ii) has a sustained ETCO₂ of less than 15 mmHg, AND
 (iii) in the judgment of EMS and law enforcement on scene, there is adequate social/emotional support and safety for civilians and professionals on scene, AND
 (iv) in the judgment of EMS and law enforcement, scene is amenable to leaving patient on scene.
 (b) If patient does not meet TOR criteria, continue resuscitation and reevaluate at the next rhythm check

f) Cardiac arrest (traumatic etiology)
 (1) ALS clinicians may terminate resuscitation for:
 (a) A pediatric patient (has not yet reached their 15th birthday) after the patient has received 5 two-minute cycles of HPCPR according to the Trauma Protocol: Trauma Arrest Protocol if:
 (i) patient has received 5 two-minute cycles of HPCPR without ROSC
 (ii) asystole on monitor and ETCO₂ is less than 15 mmHg, AND
 (iii) In the judgment of EMS and law enforcement on scene, there is adequate social/emotional support and safety for civilians and professionals on scene, AND
 (iv) In the judgment of EMS and law enforcement, scene is amenable to leaving patient on scene.

 g) Pronouncement of Death in the Field Protocol.
ADULT TERMINATION OF RESUSCITATION (NEW ’20)
MEDICAL ARREST
(Age 18 and older)

Cardiac Arrest
(Considering Termination of Resuscitation)

Exclusions:
- Pregnant
- Hypothermia or submersion

Meets Pronouncement of Death criteria

YES
Should terminate resuscitation

NO
Minimum of 15 2-minute cycles of HPCPR. Identify and treat reversible causes

ROSC

YES
Transport

NO

Asystole OR VF/Pulseless VT/PEA with ETCO₂ less than 15 mmHg

YES
May terminate resuscitation

NO
Continue resuscitation. Reevaluate at next rhythm check.
ADULT TERMINATION OF RESUSCITATION (NEW ‘20)
TRAUMA ARREST
(Age 15 years and older)

Cardiac Arrest
(Considering Termination of Resuscitation)

Exclusions:
- Pregnant
- Hypothermia or submersion

Continue resuscitation and safe transport

YES

NO

Meets Pronouncement of Death criteria

NO

YES

Rhythm

VF, VT, or PEA

Asystole

Penetrating

Blunt

Less than 15 min. to trauma center

More than 15 min. to trauma center

Minimum of 5 two-minute cycles of HPCPR. Identify and treat reversible causes.

HPCPR/Treat reversible causes, transport to trauma center

HPCPR/Treat reversible causes, transport to local ER

ROSC

YES

NO

Transport

May terminate resuscitation

Should terminate resuscitation

May terminate resuscitation
PEDIATRIC TERMINATION OF RESUSCITATION ALGORITHM (NEW ’20)
MEDICAL ARREST
(Patients Who Have Not Yet Reached Their 18th Birthday)

Cardiac Arrest
(Considering Termination of Resuscitation)

Exclusions:
- Pregnant
- Hypothermia or submersion

Meets Pronouncement of Death criteria?

Yes

Minimum of 15 two-minute cycles of HPCPR—treat reversible causes of arrest

ROSC

Yes

Transport

May terminate resuscitation

No

Asystole with ETCO₂ less than 15 mmHg and administration of at least 1 dose of epinephrine (1:10,000)

Yes

Continue resuscitation. Reevaluate at next rhythm check/consider transport.

No
PEDIATRIC TERMINATION OF RESUSCITATION ALGORITHM (NEW '20)
TRAUMA ARREST
(Patients Who Have Not Yet Reached Their 15th Birthday)

Cardiac Arrest
(Considering Termination of Resuscitation)

Exclusions:
- Pregnant
- Hypothermia or submersion

Meets Pronouncement of Death criteria?

YES

Minimum of 5 two-minute cycles of HPCPR—treat reversible causes of arrest

NO

Should terminate resuscitation

Rhythm

Asystole AND ETCO₂ less than 15 mmHg?

May terminate resuscitation

VF, VT, PEA OR Asystole with ETCO₂ greater than 15 mmHg?

Less than 15 min. to Pediatric Trauma Center
HPCPR/Treat reversible causes, transport to pediatric trauma center

More than 15 min. to Pediatric Trauma Center
HPCPR/Treat reversible causes, transport to local ER or adult trauma center

Continue resuscitation and safe transport
L. PRONOUNCEMENT OF DEATH IN THE FIELD

1. Purpose
 This protocol is designed to guide the EMS clinician in pronouncing death in the field.

 Health General Article §5-202 provides that:

 a) An individual is dead if, based on ordinary standards of medical practice, the individual has sustained either:
 (1) Irreversible cessation of circulatory and respiratory functions; or
 (2) Irreversible cessation of all functions of the entire brain, including the brain stem.

2. Indications
 EMS clinicians may pronounce the death of a patient when one or more of the following criteria has been met.
 a) Decapitation
 b) Rigor mortis
 c) Decomposition
 d) Dependent lividity
 e) \(\text{(} \text{Pulseless, apneic patient in a multi-casualty incident where system resources are required for the stabilization of living patients} \text{)} \)
 f) \(\text{(} \text{Pulseless, apneic patient with an injury not compatible with life (with the exception of an obviously pregnant female where resuscitation attempts should be initiated and the patient transported to the nearest appropriate facility)} \text{)} \)
 g) The EMS clinician has terminated resuscitation per the Termination of Resuscitation Protocol.

3. Procedure
 a) Confirm that the patient is unresponsive, pulseless, and apneic.
 b) The patient who meets criteria in 2.e may be “black” tagged during triage (by a BLS or ALS clinician), but asystole must be confirmed by ALS clinician before a formal pronouncement of death.
 c) The patient who meets criteria in 2.f must be confirmed to be in asystole by ALS clinician before a formal pronouncement of death. If the condition of the remains precludes obtaining a cardiac rhythm to confirm asystole (e.g., incineration, severe disruption of the torso, etc.), this must be documented on the patient care report.
 d) Document the exact time and location of the pronouncement of death.
 e) Notify law enforcement and follow local jurisdictional policies. If deceased patient is a tissue/organ donor and law enforcement has released the body to the family, please assist the family in calling either 800-923-1133 or (for Charles, Montgomery and Prince George’s counties) 703-641-0100. If death is pronounced during transport, deliver patient to the hospital and follow hospital policies.
M. EMS DNR/MOLST

AS OF JANUARY 1, 2002, A COPY OF THE MARYLAND EMS DNR ORDER FORM CAN BE ACCEPTED IN LIEU OF THE ORIGINAL.

AS OF OCTOBER 1, 2011, THE MARYLAND MOLST FORM CAN BE ACCEPTED IN LIEU OF THE MARYLAND EMS/DNR FORM.

1. PREFACE EMS/DNR Order or MOLST forms, bracelets, and necklaces will recognize three patient options for care prior to arrest:
 a) **Option A (ALS) (MOLST A1)**—Maximal (Restorative) Care (with intubation) Before Arrest, then DNR
 b) **Option A (DNI) (MOLST A2)**—Comprehensive Efforts to Prevent Arrest But Do Not Intubate, then DNR
 c) **Option B (BLS) (MOLST B)**—Limited (Palliative) Care Only Before Arrest, then DNR

2. VALID EMS/DNR or MOLST BRACELET WITH INSERT or AUTHORIZED METAL EMBLEM HAS THE SAME EFFECT AS THE FORM.
 a) Typically only one EMS/DNR device is needed to initiate the EMS/DNR Protocol.
 b) EMS clinicians should only request a second instrument (e.g., a bracelet when a form has already been presented) if there is reason to question the validity of the first produced notification device.

3. RECIPROCITY
 a) A standardized EMS/DNR Order from another state may be honored.
 b) Out-of-state EMS/DNR Orders shall be followed to the full extent that is permissible by the Maryland Medical Protocols for Emergency Medical Services Clinicians. If there is misunderstanding with family members or others present at the scene or if there are other concerns about following the out-of-state EMS/DNR Order, contact online medical direction for assistance.

4. ORAL EMS/DNR ORDERS
 a) EMS clinicians may follow an oral EMS/DNR Order directly from a Maryland-licensed physician (MD or DO), physician assistant, or nurse practitioner who is physically present “on-site.” EMS shall not accept orders from private physician attendings, physician assistant, or nurse practitioner by telephone.
 b) **EMS clinicians may follow an oral EMS/DNR Order from a Maryland-licensed physician “on-line” via the EMS Communications System (e.g., radio or telephone consult that is routed through a public service access point (PSAP) for audio recording).**

5. ACCEPTABLE AND UNACCEPTABLE EMS/DNR ORDERS
 a) The following are acceptable for implementing the EMS/DNR Protocol:
 (1) Original Maryland EMS/DNR Order Form
 (2) Copy of the Maryland EMS/DNR Order Form (including an electronic copy on a computer or device for patient care decisions. The sending facility is required to provide a copy of the EMS/DNR Order or MOLST to the transport crew (listed in the instructions of the MOLST form and COMAR 10.01.21.03)).
M. EMS DNR/MOLST (Continued)

(3) Other State EMS/DNR Order Form
(4) Maryland EMS/DNR Bracelet Insert
(5) Medic Alert DNR Bracelet or Necklace
(6) Oral DNR Order from EMS System Medical Consultation
(7) Oral DNR Order from other on-site physician, physician assistant, or nurse practitioner
(8) Maryland MOLST Form
(9) Maryland MOLST Bracelet

b) The following are not acceptable for implementing the EMS/DNR Protocol:
 (1) Advance directives without an EMS/DNR Order
 (2) Facility-specific DNR orders
 (3) Notes in medical records
 (4) Prescription pad orders
 (5) DNR stickers
 (6) An oral request from someone other than a physician, physician assistant, or nurse practitioner
 (7) An oral order from an attending physician, physician assistant, or nurse practitioner who is not on site
 (8) Any other device or instrument not listed above as acceptable

6. VALIDITY OF EARLIER VERSIONS OF EMS/DNR ORDERS
 a) Older versions of EMS/DNR Orders — i.e., initial version (1995 and first revision, 4/1/96) — continue to be valid and need not be updated unless the patient or authorized decision-maker wishes to take advantage of new features available in the newer forms.
 b) EMS clinicians should treat older versions of EMS/DNR order (pre 7/1/98) as “Option B (BLS) - Limited (Palliative) Care Only Before Arrest, Then DNR.”

7. REVOCATION OF AN EMS/DNR ORDER
 a) An EMS/DNR Order may be revoked at any time by:
 (1) Physical cancellation or destruction of all EMS/DNR Order devices; or
 (2) An oral statement by the patient made directly to emergency medical services personnel requesting only palliative care or resuscitation. If the patient revokes an EMS/DNR Order orally, the EMS/DNR Order notification devices do not need to be destroyed. EMS clinicians should thoroughly document the circumstances of the revocation. An oral revocation by a patient is only good for the single response or transport for which it was issued.
 b) An authorized decision-maker, other than the patient, cannot revoke an EMS/DNR Order orally. Because of the difficulty in identifying authorized decision-makers in emergent situations, it is incumbent upon an authorized decision-maker who has authority to revoke an EMS/DNR Order to either void or withhold all EMS/DNR Order devices if they wish resuscitation for the patient. If there is any confusion, the EMS clinician should contact a Base Station for medical consult.
M. EMS DNR/MOLST (Continued)

c) Section 5-610 of the Health Care Decision Act (Health General Article, Annotated Code of Maryland) makes willful concealment, cancellation, defacement, obliteration, or damage of an advance directive (including EMS/DNR Orders), without the patient’s or authorized decision-maker’s consent, a misdemeanor subject to a fine not exceeding $10,000, imprisonment not exceeding one year, or both.

8. ANTICIPATED LOCATIONS FOR EMS/DNR ORDER FORMS:
EMS personnel shall be directed to look for an EMS/DNR Order in the following places:

a) About a patient's wrist, hung from a necklace, or safety-pinned to a patient’s clothing.
b) At medical facilities, in the patient’s chart.
c) In residences and domicile facilities, by the bedside, behind the patient’s bedroom door, or on the refrigerator door.
d) In schools and educational institutions, in the nurse’s office, health room, or with the student’s attendant caregiver/aide.
e) Family or caregivers will be expected to retrieve the original EMS/DNR Order prior to the ambulance's arrival.

9. IDENTIFICATION OF PATIENT
a) If the patient is able, the patient can self-identify during the initial assessment.
b) If the patient is unable to communicate, then family, caregivers, or bystanders can identify the patient for EMS clinicians.
c) If an EMS/DNR vinyl bracelet with insert or metal emblem (bracelet or necklace) is attached to a patient (on wrist, pendant from neck, pinned to clothing, etc.) the patient’s identity can be reasonably assumed by EMS clinicians.
d) If an EMS/DNR vinyl bracelet insert or metal emblem (bracelet or necklace) is found detached from the patient, EMS personnel must treat it as an EMS/DNR Order form and identify the subject of the EMS/DNR Order as the patient. A valid bracelet insert alone, without the vinyl bracelet, is a valid EMS/DNR Order so long as EMS clinicians confirm the patient’s identity.
e) If EMS personnel are unable to ascertain with reasonable certainty, when required to do so, that the subject of the EMS/DNR Order is the patient, they may resuscitate the patient.

10. HEALTH Clinician/EMS PERSONNEL IMMUNITY
a) General immunity provisions, such as Good Samaritan immunity for volunteers and sovereign immunity for government employees, may apply under specific circumstances.
M. EMS DNR/MOLST (Continued)

b) In addition to other immunity that may be provided for in law, the Health Care Decisions Act provides the following specific immunity in cases involving the provision, withdrawal, or withholding of care that may be life-sustaining in nature:

(1) EMS clinicians are not subject to criminal prosecution or civil liability or deemed to have engaged in unprofessional conduct as determined by the appropriate licensing, registering, or certifying authority as a result of withholding or withdrawing any health care under authorization obtained in accordance with the Health Care Decisions Act. See HG (5-609(a)(1)).

(2) EMS clinicians providing, withholding, or withdrawing treatment under authorization obtained under the Health Care Decisions Act do not incur liability arising out of any claim to the extent the claim is based on lack of consent or authorization for the action. See HG (5-609(a)(2)).

(3) EMS clinicians providing treatment because they reasonably believe that an EMS/DNR Order, other than a bracelet, is not valid, do not incur liability arising out of any claim to the extent the claim is based on lack of consent or authorization for the action. See HG (5-608(d)).

11. EMS/DNR MEDICAL PROTOCOLS

a) DISPATCH

(1) Option B EMS/DNR patients (7/98 version) or patients with older version EMS/DNR Orders only require a BLS response. Once the on-scene BLS clinician has determined the need for additional pain control, an ALS Rendezvous may be requested. Medevac requests are not appropriate for these patients.

(2) Option A or A (DNI) EMS/DNR patients (7/98 version) who are not in arrest may require a range of responses from BLS through the highest echelon of response available. This will depend on the information available to dispatch and the service requested. The response complement in these cases will be dictated by local standard operating procedures (SOP).

(3) If a dispatch center is unclear whether the DNR order is an EMS/DNR Order or is unclear about the pre-arrest patient care option selected (A, A (DNI), or B), the dispatch center shall dispatch the appropriate resources based on the information available.

(4) In the absence of knowledge to the contrary, information from medical professionals at a health care facility about the EMS/DNR status of a patient may be presumed to be reliable.
b) PERFORM LIMITED PATIENT ASSESSMENT

Vital signs:
(1) Check for absence of a palpable pulse.
(2) Check for absence of spontaneous respirations in an unresponsive patient.
(3) Check for a valid EMS/DNR Order or MOLST form; vinyl bracelet insert worn either on the wrist, as a necklace, or pinned to clothing; or for a metal emblem (bracelet or necklace).

c) RESUSCITATE/DO NOT RESUSCITATE CRITERIA

(1) If an EMS/DNR Order is not present, revoked, or otherwise void, the EMS clinician shall treat and, if necessary, transport the patient.
(2) If an EMS/DNR Order is not present, but the EMS clinician believes that resuscitation or further resuscitation is futile, they may initiate the Termination of Resuscitation Protocol.
(3) If a valid EMS/DNR Order is found and the patient is in cardiac or respiratory arrest, no resuscitative measures shall be initiated.
(4) If the patient is conscious and able to communicate that they revoke the EMS/DNR orally directly to EMS clinicians, EMS clinicians shall treat and, if necessary, transport the patient.
(5) If the EMS/DNR patient (Option A, A (DNI), or B) arrests, withhold or withdraw further resuscitation and provide support to the family and caregivers. Consider notifying appropriate personnel.

d) OPTION A (MOLST A1) – MAXIMAL (RESTORATIVE) CARE PROTOCOL

(1) When Option A - “Maximal (Restorative) Care (with intubation) Before Arrest, then DNR” is selected on an EMS/DNR Order or MOLST form, the patient shall receive the full scope of restorative interventions permissible under the Maryland EMS Medical Protocols (including Continuous Positive Airway Pressure (CPAP), cardiac monitoring, synchronized cardioversion for pulse-present ventricular or supraventricular tachycardia, cardiac pacing for pulse-present symptomatic bradycardia, insertion of IVs, and drug therapy), in an attempt to forestall cardiac or respiratory arrest.

(2) This option was requested primarily by long-term care facilities for their patients who are on DNR orders for potentially prolonged periods of time. Many of these patients are less concerned about palliation of pain and more concerned about the quality of life after a stroke or heart attack. The primary medical conditions seen in the field necessitating this option have been the desire to administer dextrose for diabetic emergencies and epinephrine for anaphylactic reactions in patients who, upon arrest, are not to be resuscitated.
M. EMS DNR/MOLST (Continued)

(3) If, despite these efforts, the patient becomes pulseless or stops breathing spontaneously, EMS clinicians shall then withhold or withdraw cardiopulmonary resuscitation (including, but not limited to, CPR, cardiac pacing, defibrillation), withdrawal of active ventilatory assistance upon cardiac arrest, and withholding or withdrawal of drug therapy (e.g., chemical resuscitation).

e) OPTION A (DNI) (MOLST A2) – COMPREHENSIVE EFFORTS TO PREVENT ARREST BUT DO NOT INTUBATE, THEN DNR

(1) Option A (DNI) is exactly the same as Option A, which may include limited ventilatory support by CPAP or BiPAP, but Do Not Intubate.
(2) Therefore, inappropriate care for “Option A (DNI) – Comprehensive Efforts to Prevent Arrest but Do Not Intubate, then DNR” would be nasal or oral intubation.

f) OPTION B (MOLST B) – PALLIATIVE CARE PROTOCOL

(1) Supportive Care for Control of Signs and Symptoms
(a) Respiratory distress
 (i) Open the airway using noninvasive means (e.g., chin lift, jaw thrust, finger sweep, nasopharyngeal airway, oropharyngeal airway, Heimlich maneuver, or laryngoscopy with Magill forceps for suspected airway obstruction, but no cricothyroidotomy and no tracheostomy).
 (ii) Administer O2 as follows:
 a. If the patient is not on a ventilator and would benefit from oxygen therapy, provide passive oxygen via nasal cannula or nonrebreather mask (but no positive pressure oxygen via ambu bag, demand valve, or ventilator). If available, pulse oximetry and waveform capnography may be used.
 b. If the patient is found on an outpatient ventilator and is not in cardiac arrest, maintain ventilatory support during transport to the hospital.
 c. If the patient is found on an outpatient ventilator and is in cardiac arrest, contact on-line medical direction to consult about disconnecting the ventilator.
 (iii) Maintain an open airway by noninvasive means (e.g., chin lift, jaw thrust, finger sweep, nasopharyngeal airway, oropharyngeal airway, and Heimlich maneuver or laryngoscopy with Magill forceps for suspected airway obstruction, but no cricothyroidotomy and no tracheostomy).
 (iv) Suction as necessary.
 (v) Position for comfort.
M. EMS DNR/MOLST (Continued)

(b) External bleeding
 (i) Standard treatment (direct pressure with dressing, tourniquet)
 (ii) No IVs
(c) Immobilize fractures using skills and devices that minimize pain.
(d) Uncontrolled pain or other symptoms (e.g., severe nausea)
 (i) Allow patient, family, or health care clinicians (other than the prehos-
 pital clinician) to administer patient’s prescribed medications. Such
 health care clinicians administering medication will not have to ac-
 company the patient to the hospital. Any medications administered
 by the patient, family or healthcare clinicians must be documented in
 the patient care report (PCR).
 (ii) Patient controlled analgesia (PCA) systems for pain medication de-
 livery and other patient-controlled medication (PCM) systems shall
 be left in place in DNR patients and monitored to the extent possible
 according to the clinician’s level of certification or licensure.
 (iii) For the patient with significant pain and/or pain with a prolonged
 transport, the pain management protocol may be initiated.
(e) Existing IV lines may be in place and shall be monitored to the extent
 possible according to the clinician’s level of certification and licensure.

(2) Inappropriate Care for a Palliative Care Patient
(a) Cardiac monitoring, including 12-lead EKG, pacing, cardioversion, and
 defibrillation
(b) Initiation of IV therapy (except for medications listed in the pain manage-
 ment protocol administration for pain control as in 1 (d) (iii))
(c) EMS-initiated medications (except oxygen, and medications listed in the
 pain management protocol as in 1 (d) (iii))
(d) CPR
(e) Intubation (alternative airway device, endotracheal, nasotracheal, or
 gastric tube)
(f) Active ventilatory assistance, unless on an outpatient ventilator

(g) TRANSPORT
(1) Upon request of the patient, family, or caregivers and in lieu of transport to a
 hospital-based emergency department, EMS clinicians may transport Option
 B EMS/DNR patients who require transportation for pain control or symptom
 management or respite care to a specified inpatient hospice facility.
(2) A current list of those facilities is available from the MIEMSS
 Program Development Office 410-706-4367 (4DNR). The receiving status of
 a particular facility can be ascertained from EMRC (24 hours a day) by EMS
 radio, EMSTEL, or red phone, or by calling 800-492-3805.
M. EMS DNR/MOLST (Continued)

(3) The State EMS Board may authorize additional facilities under 6.2.2 or 6.2.4 (pp. 35-36), if recognized in the future by DHMH in accordance with 42 CFR 418.98 and 42 CFR 418.100. EMS jurisdictions and commercial ambulance services will be notified by MIEMSS of any facilities that become eligible and elect to receive patients by ambulance, become ineligible, or elect to discontinue their participation.

(4) Take a copy of EMS/DNR Order or MOLST form, vinyl bracelet with insert, or metal emblem (bracelet or necklace) to the hospital with the patient. If returning the patient from a previous transport, be sure to request a copy of the EMS/DNR Order form, vinyl bracelet with insert, or metal emblem (bracelet or necklace) from the staff. The sending facility is required to provide a copy of the EMS/DNR Order or MOLST to the transport crew (listed in the instructions of the MOLST form and COMAR 10.01.21.03).

h) COMMUNICATIONS

(1) Consultation requirements for Option A EMS/DNR patients shall be dictated by the Maryland EMS Medical Protocols in accordance with the patient’s medical needs. EMS clinicians shall notify the hospital of the patient’s EMS/DNR status (i.e., Option A) and the identity of patient’s physician or nurse practitioner.

(2) No consultation is required for the Option B EMS/DNR patients. The receiving hospital or inpatient hospice facility should be notified to expect the patient and prepare accordingly. Also make the hospital or inpatient facility aware of the patient’s EMS/DNR status (i.e., Option B) and the identity of the patient’s physician or nurse practitioner.

(3) If there is misunderstanding with family members or others present at the scene or if there are other concerns about following the EMS/DNR Order and the patient’s condition permits, contact the physician or nurse practitioner signing the order, or the patient’s hospice program, or on-line medical direction for assistance.

i) DOCUMENTATION

(1) If possible, make or retain a copy of the EMS/DNR Order or MOLST form and attach it to the official copy of the patient care report that is kept by the EMS service. Having a copy of the EMS/DNR Order or MOLST form can significantly reduce documentation requirements. Encourage sending facilities to provide you with an additional copy of the EMS/DNR Order or MOLST form with the patient’s transfer documents.
M. EMS DNR/MOLST (Continued)

(2) If the EMS/DNR Protocol is initiated:
 (a) Document, in the narrative section:
 (i) Who gave you the EMS/DNR Order or MOLST form (as an applicable
 person physically providing the written order, name of on-site physi-
 cian or nurse practitioner, or name of on-line medical direction physi-
 cian) or
 (ii) Where the EMS/DNR Order or MOLST form was found;
 (b) Document the EMS/DNR Order number, the effective date of the order,
 the name of the patient, the patient’s date of birth, and the name of the
 physician, nurse practitioner, or physician assistant who signed the order;
 (c) Document the time the EMS/DNR Protocol was initiated;
 (d) Document any care rendered;
 (e) If the patient arrests while under your care, document the time the
 patient lost spontaneous respirations or palpable pulse, if able to deter-
 mine, and
 (f) If the patient arrests while under your care, document the chain of cus-
 tody until the body is out of custody of EMS.

(3) If resuscitation protocols are initiated, document:
 (a) Care rendered as per normal practice;
 (b) The reason the EMS/DNR Protocol was not initiated, if relevant (e.g., un-
 able to find EMS/DNR Order, EMS/DNR is not or does not appear to be
 valid, patient request);
 (c) If resuscitation was started because there was reasonable doubt as to
 the validity of an EMS/DNR Order;
 (i) The EMS/DNR Order number, the effective date of the order, the
 name of the patient, the patient’s date of birth, and the name of the
 physician, nurse practitioner, or physician assistant signing the order; and
 (ii) Who gave you the EMS/DNR Order or where the EMS/DNR Order or
 MOLST form was found.

(4) Transfer any EMS/DNR Order or MOLST form to the appropriate
 authorities (e.g., to hospital or in-patient hospice personnel of the facility
 where the patient was transferred or, if the patient is deceased, to the physi-
 cian/police/medical examiner). If possible at the receiving facility, and if not
 already done, make a copy of the EMS/DNR Order or MOLST form.

 DO NOT RETAIN an original EMS/DNR Order or MOLST form.
M. EMS DNR/MOLST (Continued)

(5) If a copy of the EMS/DNR Order or MOLST form is available to EMS clinicians, it should be attached to the official copy of the patient care report that is retained by the EMS service.

(6) A vinyl bracelet with insert or metal emblem (bracelet or necklace) shall be left where found on the patient. Bracelets or metal emblems shall not be removed without the permission of the patient or the patient’s authorized decision-maker and, when possible, shall be returned with the patient to the sending facility.

j) PATIENT DISPOSITION IF NOT TRANSPORTED
If the EMS/DNR Protocol is implemented and the patient is not transported because the patient arrested at the response site, EMS personnel shall:

1) Follow local operational procedures for handling deceased patients.

2) Do not remove an EMS/DNR vinyl bracelet or metal emblem (bracelet or necklace) from the deceased patient.

3) Law enforcement personnel or a representative of the medical examiner’s office needs to be notified only in the case of sudden or unanticipated death that occurs:

 a) By violence
 b) By suicide
 c) As a result of an accident
 d) Suddenly, if the deceased was in apparent good health, or
 e) In any suspicious or unusual manner.
N. EMS DNR Flowchart

EMS/DNR Order Presented:
1. Maryland EMS/DNR Order Form
2. Other State EMS/DNR Order Form
3. Maryland EMS/DNR Bracelet Insert
4. Medic Alert DNR Bracelet or Necklace
5. Oral DNR Order from medical consultation
6. Oral DNR Order from other on-site physician, physician assistant, or nurse practitioner
7. Maryland MOLST form
8. Maryland MOLST Bracelet Insert

If spontaneous respirations are ABSENT, OR palpable pulse is ABSENT, OR patient meets “Pronouncement of Death” criteria:
DO NOT ATTEMPT RESUSCITATION

If spontaneous respirations AND palpable pulse are PRESENT:
DETERMINE DNR CARE OPTION “A” OR “B”

If OPTION “A” or “A (DNI)”: Treat in accordance with all Maryland Protocols
If OPTION “B”: Treat in accordance with Maryland Palliative Care Protocol

If patient loses spontaneous respirations or palpable pulse, withdraw resuscitative efforts.
O. CARDIAC EMERGENCIES: ACUTE CORONARY SYNDROME (SUSPECTED)

1. Inclusion Criteria
 Acute Coronary Syndrome (ACS) is defined as patients presenting with angina or anginal equivalents such as shortness of breath; chest, epigastric, arm, or jaw pain or discomfort; unexplained diaphoresis; and/or nausea.

2. Treatment
 a) Place patient in position of comfort.
 b) Administer aspirin 324 mg or 325 mg chewed, if not given prior to EMS arrival. *(NEW '20)*
 c) Assist patient with administration of patient’s own prescribed nitroglycerin. May be repeated in 3-5 minutes if chest pain persists, blood pressure is greater than 90 mmHg, and pulse is greater than 60 bpm. Maximum 3 doses total (patient- and EMT-assisted).
 d) Assess and treat for shock if indicated.
 e) Continuously monitor airway and reassess vital signs every 5 minutes.

 NITROGLYCERIN IS CONTRAINDICATED FOR ANY PATIENT HAVING TAKEN MEDICATION FOR PULMONARY ARTERY HYPERTENSION (E.G., ADCIRCA™ OR REVATIO™) OR ERECTILE DYSFUNCTION (E.G., VIAGRA™, LEVITRA™, OR CIALIS™) WITHIN THE PAST 48 HOURS. MEDICAL CONSULTATION IS REQUIRED TO OVERRIDE THIS CONTRAINDICATION.

 IF THE PATIENT’S BLOOD PRESSURE DROPS MORE THAN 20 mmHg AFTER ADMINISTRATION OF NITROGLYCERIN, OBTAIN MEDICAL CONSULTATION BEFORE FURTHER ADMINISTRATION.

 f) Additional doses of nitroglycerin require medical consultation.

 g) Obtain a 12-lead EKG; this should occur within 10 minutes of contact with an EKG-capable clinician. Document the patient’s last name, first initial, age, and gender on the EKG. These identifiers should be on the transmission copy (if able to transmit) and shall be on the delivered printed copy. *(NEW '20)*

 h) Establish IV Access with LR.
O. CARDIAC EMERGENCIES: ACUTE CORONARY SYNDROME (SUSPECTED)
(Continued)

i) If patient has a prescription or previous history of nitroglycerin use, administer nitroglycerin: 0.4 mg SL. May be repeated if symptoms persist, and blood pressure is greater than 90 mmHg and pulse is greater than 60 bpm, to a maximum dose of 1.2 mg.

j) If patient does **not** have a prescription or previous history of nitroglycerin use, an IV must be established prior to administration; then administer nitroglycerin as above.

k) If IV cannot be established, nitroglycerin may be administered with medical consultation.

l) Identify rhythm and treat according to appropriate algorithm.

m) Administer additional doses of nitroglycerin.

CONSULT A PEDIATRIC BASE STATION FOR CHILDREN (WHO HAVE NOT REACHED THEIR 18TH BIRTHDAY) WITH CHEST PAIN WITH ASSOCIATED DYSRHYTHMIAS, CARDIAC DISEASE, OR BLUNT CHEST TRAUMA.
P. CARDIAC EMERGENCIES: HYPERKALEMIA
(RENAL DIALYSIS/FAILURE OR CRUSH SYNDROME)

1. Inclusion Criteria
 Certain conditions, such as renal failure, missed hemodialysis appointments, or crush syndrome may produce an elevated serum potassium level that can cause hemodynamic complications.

2. Treatment
 a) Patients must meet the following criteria:
 (1) Suspected hyperkalemia patient
 (a) Renal dialysis/failure with poor or non-functioning kidneys or
 (b) Crush syndrome or patients with functional kidneys by history \textbf{AND}
 (2) Hemodynamically unstable renal dialysis patients or patients suspected of having an elevated potassium with bradycardia and wide QRS complexes.

 b) Place patient in position of comfort.

 c) Assess and treat for shock, if indicated.

 d) Continuously monitor airway and reassess vital signs every 5 minutes.

 e) Establish IV access with LR.

 f) Initiate Bradycardia Protocol.

 g) Consider calcium chloride 0.5–1 gram SLOW IVP over 3–5 minutes. Maximum dose 1 gram or 10 mL.

 h) Consider sodium bicarbonate 50 mEq IV over 5 minutes.

 i) Consider albuterol 20 mg (high dose) via nebulizer (if available).

 j) Crush syndrome or patients with functional kidneys by history
 Consider sodium bicarbonate 50 mEq SLOW IV over 5 minutes and then initiate drip of sodium bicarbonate 100 mEq in 1,000 mL to run over 30–60 minutes (reserve for patient suspected of crush syndrome or patients with functional kidneys by history).

 FLUSH IV WITH 5 ML OF LR BETWEEN CALCIUM AND SODIUM BICARBONATE ADMINISTRATION.
k) Place patient in position of comfort.

l) Assess and treat for shock, if indicated.

m) Continuously monitor airway and reassess vital signs every 5 minutes.

n) Establish IV access with LR.

o) Initiate Bradycardia Protocol.

p) Administer calcium chloride 20 mg/kg (0.2 mL/kg) slow IVP/IO (50 mg/min). Maximum dose 1 gram or 10 mL.

q) Consider albuterol via nebulizer
 (1) For patients 2 years of age or greater, administer albuterol 2.5 mg.
 (2) For patients less than 2 years of age, administer albuterol 1.25 mg.

r) Crush syndrome or patients with functional kidneys by history
 Consider sodium bicarbonate 1 mEq/kg IV over 5 minutes. Maximum dose 50 mEq. (Reserve for patient suspected of crush syndrome or patients with functional kidneys by history.) For patients less than 1 year of age, must be diluted (1:1) with LR.
Q. CARDIAC EMERGENCIES: IMPLANTABLE CARDIOVERTER DEFIBRILLATOR (ICD) MALFUNCTION

1. Inclusion Criteria
 ICD deactivation: Patient must meet the following criteria:
 a) Three or more distinct shocks and
 b) Obvious device malfunction with an EMS clinician-witnessed inappropriate shock (e.g., alert patient in atrial fibrillation with rapid ventricular rate or SVT)

2. Treatment
 a) Place patient in position of comfort.
 b) Assess and treat for shock if indicated.
 c) Continuously monitor airway and reassess vitals every 5 minutes.

IF PATIENT IS IN CARDIAC ARREST, PERFORM CPR AND USE AED AS APPROPRIATE DESPITE THE PATIENT’S ICD, WHICH MAY OR MAY NOT BE DELIVERING SHOCKS.

 d) Establish IV access with LR.
 e) Monitor cardiac rhythm and treat according to appropriate algorithm(s).
 f) Place an EMS donut magnet directly over device. Magnet placed directly over will deactivate device and shocks will not be delivered. After defibrillator is deactivated, tape magnet firmly in place and treat according to the appropriate algorithm(s).

IF THE PATIENT HAS A COMBINATION ICD AND PACEMAKER, DEACTIVATING THE ICD MAY OR MAY NOT DEACTIVATE THE PACEMAKER.

 g) Regardless of the decision to deactivate the ICD device, be prepared to manage the underlying rhythm (e.g., treat wide complex tachycardia with cardioversion or amiodarone per protocol as appropriate).
Q. CARDIAC EMERGENCIES: IMPLANTABLE CARDIOVERTER DEFIBRILLATOR (ICD) MALFUNCTION (Continued)

IF PATIENT BECOMES UNSTABLE OR IN THE EVENT OF A RHYTHM CHANGE WHERE A SHOCK IS DESIRED, REMOVE THE MAGNET TO REACTIVATE THE ICD. IF REACTIVATION DOES NOT OCCUR, USE MANUAL DEFIBRILLATOR IN ACCORDANCE WITH TACHYCARDIA PROTOCOL.

CONTINUE CHEST COMPRESSIONS FOR PEDIATRIC PATIENTS WHO REMAIN POORLY PERFUSED DESPITE PACEMAKER CAPTURE.

h) If ICD deactivation indications are questionable or deactivation is unsuccessful (or a donut magnet is not available) and undesired shocks continue, medications may be administered for patient comfort.
 OR
 (2) Midazolam 0.1 mg/kg SLOW IV/IN/IM/IO. Maximum single dose is 5 mg.
 (Paramedic may perform without consult.)
 IN administration max 1 mL per nare
 IM administration requires all clinicians to obtain consultation

i) Transport to the closest appropriate facility.

Consult a Pediatric Base Station for children (who have not reached their 18th birthday) with an ICD device delivering shock therapy or malfunctioning.

j) If ICD deactivation indications are questionable or deactivation is unsuccessful (or a donut magnet is not available) and undesired shocks continue, medications may be administered for patient comfort.
 OR
 (2) Midazolam 0.1 mg/kg SLOW IV/IO over 1–2 minutes. Maximum single IV/IN/IO dose 2 mg. Maximum total dose 5 mg. IN administration max 1 mL per nare. If IV cannot be established, administer 0.2 mg/kg IM. Max single IM dose is 5 mg. (IM requires all clinicians to obtain medical consultation.) Maximum total dose 5 mg.

k) Transport to the closest appropriate facility.
R. CARDIAC EMERGENCIES: ST ELEVATION MYOCARDIAL INFARCTION (STEMI)

ACUTE CORONARY SYNDROME (ACS) IS DEFINED AS PATIENTS PRESENTING WITH ANGINA OR ANGINAL EQUIVALENTS SUCH AS SHORTNESS OF BREATH; CHEST, EPIGASTRIC, ARM, OR JAW PAIN OR DISCOMFORT; DIAPHORESIS; AND/OR NAUSEA.

Inclusion Criteria:
Patient presents with Acute Coronary Syndrome (ACS) symptoms and has one of the following in a diagnostic quality EKG:

a) Greater than 1 mm of ST elevation in two or more contiguous limb leads
b) Greater than 1.5 mm of ST elevation in two or more precordial leads (in women)
c) Greater than 2 mm of ST elevation in two or more precordial leads (in men)
d) Anterior, Inferior, or Lateral MI: ST elevation greater than 1 mm in two or more contiguous leads
 QRS complex is narrower than 0.12 seconds; (if wider than 0.12, you are unable to diagnose as STEMI)
 OR

e) Posterior MI: ST depression greater than 1 mm in V1 and V2 with an R/S ratio of greater than or equal to one
 QRS complex is narrower than 0.12 seconds; (if wider than 0.12, you are unable to diagnose as STEMI)

DETECTION OF RIGHT VENTRICULAR AND POSTERIOR WALL INFARCTION IS IMPORTANT, AS APPROXIMATELY 40% OF PATIENTS WITH INFERIOR WALL INFARCTIONS HAVE RIGHT VENTRICULAR AND/OR POSTERIOR WALL INVOLVEMENT, WHICH PREDISPOSES THEM TO MORE COMPLICATIONS AND INCREASED MORTALITY.
Consider the following presentations as indicative of increased cardiovascular risk and request guidance from the closest appropriate EMS Base Station or Cardiac Interventional Center.

a) **Left bundle branch block (LBBB):** LBBB is rare in the setting of acute myocardial infarction and often indicates underlying cardiovascular disease. LBBB is more likely to signal a myocardial infarction if one of the following conditions are met:
 1) Patient presents in cardiogenic shock
 2) EKG shows excessive ST segment elevation greater than 5 mm
 3) EKG shows ST segment deviation (elevation or depression) in the same direction as the QRS complex. This concept is known as inappropriate concordance.

b) **Wellens' Wave:** Biphasic T waves or deeply inverted T waves in precordial leads (V2-V3, +/-V4).

c) **ST segment elevation in Lead aVR:** Multilead ST segment depression with coexisting ST segment elevation in lead aVR.

d) **Hyperacute T waves:** Peaked, broad-based T waves

1. **Treatment**

a) Follow Chest Pain Protocol for nitrate, aspirin, and pain management.

b) If patient meets above STEMI criteria, this patient is a Priority 1 patient and requires a medical consult.

c) If a patient meets one of the above condition sets for STEMI inclusion criteria, the patient shall be transported to the closest Cardiac Interventional Center by air or ground as long as the delivery time is not more than 45 minutes greater than transport to the nearest ED.

 (1) When indicated and based on the EMS clinician’s report, the Base Station physician at the receiving Cardiac Interventional Center will activate its Cardiac Interventional Team.

 (2) The receiving ED physician will determine if the patient can bypass the ED and go directly to the cardiac catheterization lab to meet the cardiac interventional team.

 (3) If the patient cannot be delivered to a Cardiac Interventional Center within the allotted time, complete the Fibrinolytic Therapy Checklist for STEMI.

 (a) If the patient meets all of the criteria for fibrinolytic therapy, transport to the nearest ED.

 (b) If the patient does not meet all of the criteria for fibrinolytic therapy, consult with the nearest Cardiac Interventional Center and the nearest ED to determine the most appropriate receiving facility.
R. CARDIAC EMERGENCIES: ST ELEVATION MYOCARDIAL INFARCTION (STEMI) (Continued)

d) If patient does not have EKG ST elevations greater than 1 mm in two contiguous leads, the patient shall be transported to the closest appropriate facility.
e) If a patient presents with IWMI, obtain a tracing of V4R to rule out right ventricular involvement. If ST elevation noted in V4R, withhold nitrates. The triad of RVMI often includes clear lung sounds, hypotension, and JVD. 40% of IWMI have right ventricular involvement. If hypotensive with clear lung sounds, administer 250–500 mL of LR.

For additional bolus, perform medical consultation.

CONSULT A PEDIATRIC BASE STATION FOR CHILDREN WITH ST ELEVATIONS WHO HAVE NOT REACHED THEIR 18TH BIRTHDAY.

Fibrinolytic Therapy Checklist for STEMI

Use this checklist if a STEMI patient cannot be delivered to a Cardiac Interventional Center within 45 minutes greater than transport to the nearest ED. All of the “YES” boxes and all of the “NO” boxes must be checked before a patient should be transported to the nearest emergency department.

INCLUSION CRITERIA

(All of the “YES” boxes must be checked)

YES

- 18 years of age or older
- Signs and symptoms of STEMI
- Patient cannot be delivered to a Cardiac Interventional Center within 45 minutes greater than transport to the nearest ED

EXCLUSION CRITERIA

(If any of the “NO” are unchecked, clinician must consult with a Cardiac Interventional Center and nearest ED to determine most appropriate receiving facility.)

PATIENT HAS NO:

- Active internal bleeding (e.g., GI or urinary bleeding within the last 21 days)
- Known bleeding disorder
- Within 3 months of intracranial surgery, serious head trauma, or stroke

- Within 14 days of major surgery or serious trauma
- History of intracranial hemorrhage
- Witnessed seizure at onset
- History of cancer of the brain
S. SUDDEN INFANT DEATH SYNDROME (SIDS)

1. Inclusion Criteria
 The unexpected arrest of an apparently healthy infant in which resuscitation is unsuccessful and there is no attributable cause of death.
 The infant is often discovered by a caretaker in the early morning hours after having been uneventfully laid down to sleep the night before.

2. Treatment
 a) Perform an initial patient assessment, assign a treatment priority, and perform CPR, if indicated.

 RIGOR MORTIS MAY BE PRESENT (SEE PRONOUNCEMENT OF DEATH IN THE FIELD PROTOCOL).

 b) Move patient to the transport unit.

 c) Establish communications and obtain medical direction.

 d) If physician consultation is genuinely unavailable, monitor cardiac rhythm and treat according to the appropriate algorithm(s).

 e) Transport quickly to the closest appropriate facility.

 SIDS IS ONE OF THE LEADING CAUSES OF DEATH IN THE 1–12 MONTH AGE GROUP AND SEEMS TO PEAK AT 2 TO 4 MONTHS OF AGE.

 HOW YOU INTERACT WITH THE FAMILY MAY HAVE A SIGNIFICANT IMPACT ON HOW THEY DEAL WITH THE LOSS OF THE INFANT. BE CAUTIOUS OF STATEMENTS OR ACTIONS THAT MAY BE JUDGMENTAL.

 SPECIAL ATTENTION SHOULD BE PAID TO THE CONDITION OF THE INFANT, INCLUDING THE PRESENCE OF ANY MARKS OR BRUISES, AND TO PRESERVATION OF THE ENVIRONMENT, INCLUDING ANY BED CLOTHING AND THE CONDITION OF THE ROOM.

 RIGOR MORTIS MAY BE PRESENT (SEE PRONOUNCEMENT OF DEATH IN THE FIELD PROTOCOL).
T. ENVIRONMENTAL EMERGENCIES: COLD EMERGENCIES (FROSTBITE)

1. Inclusion Criteria
 Exposure to cold environment (not necessarily outdoors). Frostbite usually affects the feet first, followed by the hands, face, and/or ears. The skin initially appears reddened, then turns mottled, bluish, white and/or gray with continued freezing of the flesh. Pain persists during initial stages, followed by numbness.

2. Treatment
 a) Remove patient from cold environment.
 b) Handle potential frostbitten areas gently.
 c) Cover lightly with gauze.
 d) Protect from further heat loss.

 DO NOT RUB THE AFFECTED AREAS, AS THIS WILL CAUSE MORE DAMAGE TO THE FROZEN TISSUE.

 e) Establish IV access with LR.

PEDIATRIC SECTION ON NEXT PAGE
g) Remove patient from cold environment.

h) Handle potential frostbitten areas gently.

i) Cover lightly with gauze.

j) Protect from further heat loss

k) Establish IV/IO access with LR, if appropriate.

U. ENVIRONMENTAL EMERGENCIES: COLD EMERGENCIES (HYPOTHERMIA)

1. Inclusion Criteria
 a) Mild to moderate hypothermia (90°–95° F)
 Core body temperature (if available) less than 95° F but greater than 90° F. Patient may present with a history of exposure to cold, altered level of consciousness, shivering, stiffness of muscles, stumbling or staggering gait, cool or cold skin, mottled or pale skin, absent or difficult to detect respiratory effort and/or peripheral pulses, respiratory, and/or cardiac arrest.

 b) Severe hypothermia (less than 90° F)
 Core body temperature (if available) less than 90° F. Patient may present with any of the symptoms listed above except shivering.

 HANDLE ALL HYPOTHERMIC PATIENTS CAREFULLY. ROUGH HANDLING MAY PRECIPITATE CARDIAC ARREST.

 IF HYPOTHERMIA IS SUSPECTED AND THE PATIENT DOES NOT HAVE INJURIES INCOMPATIBLE WITH LIFE, THE PATIENT SHOULD BE RESUSCITATED.

2. Treatment
 a) Remove the patient from the cold environment.
 b) Avoid further heat loss by removing wet clothing, replacing with dry blankets and insulating material. Use a thermal type blanket and special attention to covering the patient’s head.
 c) PASSIVELY rewarm patient within a warm environment.
 d) If available, administer warmed oxygen.

 ADMINISTER SHOCK(S) WITH THE AED IF INDICATED.

 e) For further AED shocks, obtain medical consultation.
U. ENVIRONMENTAL EMERGENCIES: COLD EMERGENCIES (HYPOTHERMIA) (Continued)

f) Monitor EKG closely.

g) Establish IV access with LR, if appropriate.

h) Identify rhythm and treat according to appropriate algorithm.

CONSIDER, WITH MEDICAL CONSULTATION, CONTINUED CARDIOPULMONARY ARREST PROTOCOLS WITH LONGER MEDICATION INTERVALS.
V. ENVIRONMENTAL EMERGENCIES: DEPRESSURIZATION

1. Inclusion Criteria
 History of SCUBA, breathing in a pressurized environment, or altitude chamber usage with sudden depressurization. Patients may present with any of the following symptoms: fatigue and itching, pain, vertigo, focal weakness, visual disturbances, speech difficulty, marbled rash, numbness, tingling, confusion, seizure, and/or cardiac arrest.

CONSIDER TRANSPORT TO HYPERBARIC MEDICINE SPECIALTY CENTER.

AEROMEDICAL TRANSPORT MAY BE APPROPRIATE FOR PATIENTS WITH BAROTRAUMA.

FOR ADDITIONAL INFORMATION CONCERNING SCUBA INJURIES, CONTACT THE DIVING ALERT NETWORK VIA EMRC 1-800-648-3001.

2. Treatment
 a) Remove patient from water.

 b) Protect patient from and/or treat for hypothermia.

 c) Establish IV access with LR.
W. ENVIRONMENTAL EMERGENCIES: HAZARDOUS MATERIALS EXPOSURE

1. Inclusion Criteria
Exposure to a known or unknown hazardous material. Patient may present with a wide array of signs and symptoms due to the variables of substance exposure. Any patient who is exposed to a hazardous material is considered contaminated until the patient is decontaminated thoroughly.

2. Treatment

DO NOT ENTER THE SCENE UNLESS PROPERLY TRAINED AND EQUIPPED TO DO SO.

PROPER LEVELS OF PERSONAL PROTECTIVE EQUIPMENT (PPE) ARE TO BE WORN BY ALL PERSONNEL, DEPENDING ON THE MATERIAL INVOLVED AND THE ZONE OCCUPIED.

IT IS ESSENTIAL TO HAVE THE EMS CLINICIAN IN CHARGE NOTIFY EMRC AND POTENTIAL RECEIVING HOSPITALS OF A HAZARDOUS MATERIALS EVENT IN WHICH THEY MAY BE CONSULTED. NOTIFY EMRC/RECEIVING HOSPITALS ABOUT THE FIRST PATIENT’S ETA, THE NUMBER OF VICTIMS, AND THE TYPE OF HAZARDOUS MATERIAL AS SOON AS INFORMATION BECOMES AVAILABLE.

a) Transport of patients even after decontamination will be by ground units only.

THE USE OF AEROMEDICAL TRANSPORT IS CONTRAINDICATED FOR ANY POTENTIALLY CONTAMINATED PATIENT

b) Triage and decontaminate if indicated.

c) Protect the patient from the environment and ensure the patient is not/does not become hypothermic.

d) Establish IV access with LR in a clean area if medication administration is anticipated.

e) Consider antidote to specific agent if available.

f) Consider antibiotic specific to agent in mass casualty incident, if available.
W. ENVIRONMENTAL EMERGENCIES: HAZARDOUS MATERIALS EXPOSURE
(Continued)

g) Medical Follow-Up
All public safety personnel who come into close contact with hazardous materials should receive an appropriate medical examination, post-incident, based on information from the designated poison control center. This should be completed within 48 hours of the incident and compared with the findings of any recent pre-incident examination. Personnel who routinely respond to hazardous materials emergencies should have periodic pre-incident examinations. Personnel should be advised of possible latent symptoms at the time of their exams.
X. ENVIRONMENTAL EMERGENCIES: HEAT-RELATED EMERGENCIES

1. Inclusion Criteria
 a) **Heat Cramps:** Moist, cool skin, cramps, normal to slightly elevated temperature
 b) **Heat Exhaustion:** Moist, cool skin, cramps, weakness, dizziness, normal to elevated temperature, nausea
 c) **Heat Stroke:** Hot, dry skin (25% of patients will still be moist), seizures, altered mental status, dilated pupils, rapid heart rate, or arrhythmia

2. Treatment
 a) Remove patient from hot environment.
 b) Cool patient as appropriate.
 c) If patient is conscious and alert, without nausea, give electrolyte-rich fluid by mouth, if available.
 d) If **heat stroke**, aggressively cool patient and place patient in semi-Fowler’s position.

IF ACTIVE COOLING IS IN PROGRESS BY A TEAM/EVENT PHYSICIAN OR ATHLETIC TRAINER, ALLOW COOLING TO CONTINUE PRIOR TO MAKING AN ATTEMPT TO TRANSPORT UNTIL THE PATIENT HAS AN IMPROVED MENTAL STATUS OR THE TEMPERATURE HAS DECREASED TO 102 DEGREES F OR LESS. IF ANY DISAGREEMENT IN THE PATIENT CARE PLAN OCCURS, CONTACT A BASE STATION FOR AN ONLINE MEDICAL CONSULTATION. *(NEW '20)*

 e) Establish IV access with LR.
 f) Administer fluid bolus, if appropriate.
 20 mL/kg of LR IV
 Titrate to a systolic pressure of 90 mmHg.
Y. ENVIRONMENTAL EMERGENCIES: NEAR-DROWNING

1. Inclusion Criteria
 Confirmed or suspected near drowning, altered level of consciousness, dyspnea, cyanosis, vomiting, seizures, or cardiopulmonary arrest.

2. Treatment
 a) Remove patient from water.

 ABDOMINAL THRUSTS ARE CONTRAINDICATED, UNLESS THE PATIENT HAS A FOREIGN BODY AIRWAY OBSTRUCTION.

 ALL NEAR-DROWNING VICTIMS SHOULD BE TRANSPORTED EVEN IF THEY APPEAR UNINJURED OR APPEAR TO HAVE RECOVERED.

 ENTER WATER ONLY IF TRAINED AND AS A LAST RESORT.
 (REACH, THROW, ROW, GO WITH ASSISTANCE)

 b) Protect from and/or treat for hypothermia.

 c) Establish IV access with LR.

 d) Identify rhythm and treat according to appropriate algorithm.

 e) Protect from and/or treat for hypothermia.

 f) Establish IV/IO access with LR.

 g) Identify rhythm and treat according to appropriate algorithm.

 IF THE PARENT OR GUARDIAN REFUSES MEDICAL CARE OR TRANSPORT, CLINICIAN SHALL CONTACT A PEDIATRIC BASE STATION PHYSICIAN.
Z. ENVIRONMENTAL EMERGENCIES: OVERPRESSURIZATION

1. Inclusion Criteria
 History of SCUBA, breathing in a pressurized environment and altitude chamber or exposure to blast concussion waves. Patients may present with any of the following symptoms: fatigue and itching, pain, vertigo, visual disturbances, dyspnea, bleeding from any body orifice, hearing difficulty, speech difficulty, numbness, tingling, confusion, seizure, and/or cardiac arrest.

 ASSOCIATED INJURIES MAY MAKE ASSESSMENT AND COMMUNICATION DIFFICULT. SYMPTOMS MAY BE SLOW TO PRESENT.

 AEROMEDICAL TRANSPORT MAY BE APPROPRIATE FOR PATIENTS WITH BAROTRAUMA.

 FOR ADDITIONAL INFORMATION CONCERNING SCUBA INJURIES, CONTACT THE DIVING ALERT NETWORK VIA EMRC 1-800-648-3001.

2. Treatment
 a) Treat associated trauma.

 b) Establish IV access with LR.

 c) Administer fluid bolus, if appropriate.
 20 mL/kg of LR IV
 Titrate to a systolic pressure of 90 mmHg.
AA. NAUSEA AND VOMITING

1. Inclusion Criteria

Patients presenting with nausea and/or vomiting due to underlying injury, medical condition, active motion sickness, or medication side effect/complication.

Under certain injury or medical conditions, vomiting or intense nausea can complicate the existing injury or medical condition. Preventative administration of an anti-nausea/anti-emetic should be considered (e.g., penetrating eye injury, high risk for aspiration, side effects of opioid administration).

2. Treatment

a) Place patient either in position of comfort or in left lateral position if not prevented by spinal protection or packaging.

b) Allow patient to inhale vapor from isopropyl alcohol wipe 3 times every 15 minutes, as tolerated. (NEW ’20)

c) Establish IV access with LR, if appropriate.

d) Administer fluid bolus, if appropriate. 20 mL/kg of LR IV. Titrate to a systolic pressure of 90 mmHg.

e) Adult: Administer ondansetron 8 mg SLOW IV over 2–5 minutes OR 4–8 mg IM OR 8 mg orally disintegrating tablet (ODT) May repeat once without medical consultation.

A third dose may be administered, to a maximum total dose of 24 mg.

f) Establish IV access with LR, if appropriate.

g) If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO.

Pediatric:

For patients 28 days – 12 years old: Administer ondansetron 0.1 mg/kg SLOW IV over 2–5 minutes

For patients 13–18 years of age: Administer ondansetron 8 mg ODT OR 8 mg SLOW IV over 2–5 minutes OR

If no IV: Administer ondansetron 0.1 mg/kg IM (with max single dose of 8 mg); May repeat once without medical consultation.

A third dose may be administered, to a maximum total dose of 0.3 mg/kg or 24 mg, whichever is lower.
BB. OBSTETRICAL/GYNECOLOGICAL EMERGENCIES:
CHILDBIRTH ALGORITHM

1. Inclusion Criteria
Patient presents pregnant, with contractions and/or pain, accompanied by bleeding or discharge, crowning during contraction, the feeling of an impending bowel movement, and/or a rock-hard abdomen.

2. Treatment

Pre-Arrival Information

Excessive Bleeding?

YES

Absorb Bleeding
Treat for Shock

NO

Seizures

YES

Transport
Left Lateral Position
Maintain Body Temp.
Have Suction Ready (d)

NO

NO

Baby’s Head Presents?

NO

NO

YES

Hand/Foot Presents?

YES

Left Lateral Position

NO

NO

Amniotic Sac Broken?

NO

Puncture Sac

YES

Suction mouth then nose; if meconium present, multiple suction attempts should be made.

Support Head

(Continued on next page)
(a) - Keep presenting part of baby off the cord. Monitor and attempt to maintain the pulse in the cord.

(b) - Position of mother:

(c) - Uterine massage is performed with the heel of the hand applying firm pressure from the pubis toward the umbilicus only. This massage is continued until bleeding diminishes. Transport rapidly.

(d) - Go to Seizure Protocol: Consider midazolam.
1. Inclusion Criteria
This protocol applies to the infant within the first hour after delivery.

UNIVERSAL ALGORITHM FOR THE NEWLY BORN FOR BLS

Dry, Warm, Position, Stimulate

Suction if non-vigorous or obvious airway obstruction

If Apnea/Gasping, HR is less than 100 or central cyanosis
Ventilate with BVM @ 40–60 breaths/min using room air for the first minute (40-60 breaths) before connecting to 100% oxygen

HR less than 60 after 30 seconds of BVM
120 compressions/minute with 3:1 compressions: ventilations

AED NOT INDICATED FOR NEWLY BORN

ALS Care for Rhythm Management & Treatment Medications (ALS Only)
3. UNIVERSAL ALGORITHM FOR NEWLY BORN FOR ALS

- Dry, Warm, Position, Stimulate

Assess respirations

- Respirations Spontaneous with Good Effort
- Respiratory Rate Slow/Gasping, Absent

Position airway
Ventilate with BVM @ 40-60 breaths/min using room air for first minute (a)

Evaluate Heart Rate

- Heart Rate less than 60
 Perform CPR
 120 compressions/minute with 3:1 compressions: ventilations on 100% oxygen
 Consider intubation (a)

- Heart Rate 60–100
 Support ventilations with BVM at a rate of 40–60 breaths/min. Use room air for an additional 30 seconds before connecting to 100% oxygen

- Heart Rate greater than 100
 Reassess respiratory rate and effort
 Remain on room air Monitor SpO₂ (a)
 Evaluate skin color
 APGAR at 1 min, repeat at 5 mins

Reassess

- IV/IO with LR (c)
 Epinephrine IV/IO 0.01 mg/kg (1:10,000)
 Neonates (0–28 days)
 Epinephrine ET 0.03 mg/kg (1:10,000) dilute with 1 mL
 Repeat every 4 minutes
 Consider intubation (a)
 Consider causes (b)

- Monitor IV/IO with LR if poor perfusion (c)

- Administer supplemental O₂

- Monitor and maintain body temperature
- Transport

Medical consult

Monitor and maintain body temperature
Transport
CC. NEWLY BORN PROTOCOL (Continued)

(a) - Acceptable Target SpO2 after Birth
 1 min – 60-65%
 2 min – 65-70%
 3 min – 70-75%
 4 min – 75-80%
 5 min – 80-85%
 10 min – 85-95%

(b) - Consider possible causes of depressed newborn.
(Parenthesis = possible therapies and treatments)
 Respiratory depression (Premature infants less than 32 weeks gestation will likely require
 ongoing BVM ventilations due to immature lungs.)
 Hypoglycemia (Threshold for treatment = 30 mg/dL) (D10W 2–4 mL/kg IV/IO (D10W is
 prepared by mixing one part of D50W with four parts LR.))
 Hypothermia (Warming)
 Hypovolemia (Volume infusion – see “c”, below)

(c) - Volume infusion is 10 mL/kg.

4. APGAR Chart

<table>
<thead>
<tr>
<th>SIGN</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSCLE TONE (ACTIVITY)</td>
<td>LIMP</td>
<td>SOME FLEXION</td>
<td>ACTIVE, GOOD FLEXION</td>
</tr>
<tr>
<td>PULSE</td>
<td>ABSENT</td>
<td>LESS THAN 100/MIN</td>
<td>GREATER THAN 100/MIN</td>
</tr>
<tr>
<td>REFLEX IRRITABILITY* (GRIMACE)</td>
<td>NO RESPONSE</td>
<td>SOME GRIMACE OR AVOIDANCE</td>
<td>COUGH, CRY OR SNEEZE</td>
</tr>
<tr>
<td>COLOR (APPEARANCE)</td>
<td>BLUE, PALE</td>
<td>PINK BODY, BLUE HANDS/FEET</td>
<td>PINK</td>
</tr>
<tr>
<td>RESPIRATIONS</td>
<td>ABSENT</td>
<td>SLOW/IRREGULAR, INEFFECTIVE</td>
<td>CRYING, RHYTHMIC EFFECTIVE</td>
</tr>
</tbody>
</table>

*Nasal or Oral Suction Catheter Stimulus
DD. OBSTETRICAL/GYNECOLOGICAL EMERGENCIES: VAGINAL BLEEDING

1. Inclusion Criteria
 Unusually heavy vaginal bleeding as a result of possible pregnancy, miscarriage, postpartum bleeding, or sexual assault. Patient may exhibit the signs and symptoms of hypoperfusion.

2. Treatment
 a) Place absorbent pads underneath patient.
 b) Treat for hypoperfusion.
 c) If post-partum bleeding, consider uterine massage from pubis toward umbilicus only.
 d) Reconsider ALS.

PRODUCTS OF CONCEPTION SHOULD BE BROUGHT TO THE HOSPITAL!
DO NOT PULL CONCEPTUAL PRODUCTS FROM VAGINAL OPENING WITHOUT MEDICAL CONSULTATION!

 e) Establish IV access with LR, if appropriate.
 f) Administer fluid bolus, if appropriate.
 20 mL/kg of LR IV
 Titrate to a systolic pressure of 90 mmHg.
 g) Consider additional fluid administration.
 Maximum dose 2,000 mL without medical consultation.
EE. OVERDOSE/POISONING: CARBON MONOXIDE/SMOKE INHALATION

1. Inclusion Criteria
 Carbon monoxide (CO) is an odorless, colorless gas that is most commonly a product of incomplete combustion. Carbon monoxide poisoning occurs when a victim is exposed to high levels of carbon monoxide, frequently seen in house fires, malfunctioning furnaces, with suicide attempts, or others.

 Presentation may vary depending on the concentration, method, and duration of exposure to the agent. Symptoms may include but are not limited to: headache, dizziness, and nausea and vomiting, most frequently. Symptoms can also include: chest pain, altered mental status, dyspnea, and/or seizures.

 PULSE OXIMETRY MAY NOT BE ACCURATE FOR CARBON MONOXIDE VICTIMS. PATIENTS MAY HAVE NORMAL SpO₂ LEVELS WITH CARBON MONOXIDE TOXICITY.

 PATIENTS WITH BURNS AND TRAUMA SHOULD BE REFERRED TO THE NEAREST APPROPRIATE TRAUMA SPECIALTY CENTER.

2. Treatment
 a) Remove patient from toxic environment by appropriately trained personnel using proper level PPE.
 b) Decontaminate as appropriate.
 c) Administer high-flow oxygen.
 d) Treat respiratory and/or cardiac symptoms.
 e) Consider Hyperbaric Center referral.
 f) Consider obtaining blood sample using closed system, particularly if transcutaneous carboxyhemoglobin measurement is not available.
 g) Establish vascular access.
 (1) If hypoperfusion exists, administer 20 mL/kg bolus of LR. May repeat once without consult.
 (a) Consider additional fluid administration.
 (2) Consider following Overdose/Poisoning: Cyanide Protocol (if participating) for smoke inhalation patients.
 h) Remove patient from toxic environment by appropriately trained personnel using proper level PPE.
 i) Decontaminate as appropriate.
 j) Administer high-flow oxygen.
 k) Treat respiratory and/or cardiac symptoms.
 l) Consider Hyperbaric Center referral.
m) Consider obtaining blood sample using closed system, particularly if transcutaneous carboxyhemoglobin measurement is not available.

n) Establish vascular access.
 (1) If hypoperfusion exists, administer 20 mL/kg bolus of LR. May repeat once without consult.
 (a) Consider additional fluid administration.
 (2) Consider following Overdose/Poisoning: Cyanide Protocol (if participating) for smoke inhalation patients.

o) Hyperbaric Medicine Specialty Center Referral: Indications for Referral
 (1) Patients with exposure to products of combustion (smoke) or carbon monoxide who have a carboxyhemoglobin value of greater than 25% with or without symptoms
 OR
 (2) Patients with PROVEN exposure to products of combustion (smoke) or carbon monoxide who have:
 (a) any of the following diagnostic indicators:
 (i) Patient (transcutaneous or blood) carboxyhemoglobin value of greater than 15%
 (ii) Alarm of EMS or fire agency maintained passive carbon monoxide monitor
 (iii) Targeted atmospheric carbon monoxide value 100 ppm or greater in the patient environment
 (b) and one or more of the following:
 (i) History of loss of consciousness during exposure (may have since resolved)
 (ii) GCS persistently less than or equal to 13
 (iii) Rapid decline of neurological symptoms including actively seizing patients with appropriate airway stabilization
 (iv) Pregnancy
 (v) Chest pain
 (vi) Extremes of age
 (vii) Per clinician discretion

FETAL HEMOGLOBIN HAS A VERY HIGH AFFINITY FOR CARBON MONOXIDE AND PREGNANT MOTHER MAY BE ASYMPTOMATIC, YET FETAL LEVELS MAY BE DANGEROUSLY HIGH. ENCOURAGE THE PATIENT TO BE EVALUATED AT HOSPITAL.

PATIENTS WHO DO NOT MEET CRITERIA IN O)(1) OR (2) ABOVE SHOULD BE TRANSPORTED TO THE CLOSEST HOSPITAL-BASED EMERGENCY DEPARTMENT.

p) Contraindications for Referral to the Hyperbaric Medicine Specialty Center
 (1) Transport time to the Hyperbaric Medicine Specialty Center greater than one hour
 (2) Patients in cardiac arrest
 (3) Patients who have return of spontaneous circulation post-arrest
OVERDOSE/POISONING: ABSORPTION

1. Inclusion Criteria
 Patient may exhibit any of the following: nausea, vomiting, diarrhea, altered mental status, abdominal pain, rapid heart rate, dyspnea, seizures, arrhythmias, sweating, tearing, defecation, constricted/dilated pupils, rash, or burns to the skin.

2. Treatment
 a) Remove patient from the toxic environment by appropriately trained personnel using proper level PPE.
 b) Identify agent and mechanism of exposure.
 c) Decontaminate as appropriate.
 d) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
 e) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 0.4–2 mg IVP/IO (titrated)/IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare.
 Repeat as necessary to maintain respiratory activity.
 f) Consider repeating naloxone.
 g) Establish IV access with LR in a clean area, if appropriate.
 h) If organophosphate poisoning, consider atropine 2–4 mg IV or IM every 5–10 minutes.
 i) Consider antidote to specific agent if available.
 j) Consider antibiotic specific to agent in mass casualty incident, if available.
FF. OVERDOSE/POISONING: ABSORPTION (Continued)

k) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, **OR** administer 4 mg/0.1 mL IN in one nare.

Consider additional doses of naloxone.

l) Remove patient from the toxic environment by appropriately trained personnel using proper level PPE.

m) Identify agent and mechanism of exposure.

n) Decontaminate as appropriate.

o) Establish IV access with LR in a clean area, if appropriate.

p) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
Aged 28 days to adult: Administer 0.1 mg/kg IVP/IO (titrated)IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); **OR** administer 4 mg/0.1 mL IN in one nare. May be repeated as necessary to maintain respiratory activity. ET dose: 0.2–0.25 mg/kg.

q) **If organophosphate poisoning**, consider atropine 0.02 mg/kg IV/IO or IM every 5–10 minutes.

r) Consider antidote to specific agent if available.

s) Consider antibiotic specific to agent in mass casualty incident, if available.
GG. OVERDOSE/POISONING: INGESTION

1. Inclusion Criteria
 Patient may exhibit any of the following: nausea, vomiting, diarrhea, altered mental status, abdominal pain, rapid or slow heart rate, dyspnea, seizures, arrhythmias, chemical burns around or inside the mouth, or abnormal breath odors.

2. Treatment

 DO NOT GIVE ANYTHING BY MOUTH WITHOUT MEDICAL CONSULTATION!

 POISON INFORMATION CENTER RECOMMENDATIONS SHOULD BE SOLICITED IN CONJUNCTION WITH MEDICAL CONSULTATION, BUT MEDICATION ORDERS CAN ONLY BE ACCEPTED FROM AN APPROVED BASE STATION.

 a) Identify substance and amount ingested.

 b) Consider activated charcoal without Sorbitol 1 gram/kg PO.

 c) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.

 Consider additional doses of naloxone.

 d) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 0.4–2 mg IVP/IO (titrated)/IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare. Repeat as necessary to maintain respiratory activity.

 e) Establish IV access with LR in a clean area, if appropriate.

 f) If dystonic, extrapyramidal, or mild allergic reaction, consider diphenhydramine 25 mg IV or IM. (NEW ’20)
GG. OVERDOSE/POISONING: INGESTION (Continued)

- **g)** If beta-blocker overdose, consider glucagon.

 - 1 mg every 5 minutes IVP

- **h)** If calcium channel blocker overdose, consider calcium chloride.
 - 0.5–1 gram SLOW IVP over 10 minutes
 - Max dose of 1 gram

 ALERT

 CALCUIUM CHLORIDE IS CONTRAINDICATED IN A CALCIUM CHANNEL BLOCKER OVERDOSE PATIENT TAKING DIGOXIN.

- **i)** If organophosphate poisoning, consider atropine.

 - 2–4 mg IVP or IM every over 10 minutes
 - Max dose of 1 gram

- **j)** If tricyclic overdose, consider sodium bicarbonate.

 - 1 mEq/kg IVP bolus initially with 0.5 mEq/kg at 10 minute intervals

- **k)** Consider antidote to specific agent if available.

- **l)** Consider antibiotic specific to agent in mass casualty incident, if available.

- **m)** Identify substance and amount ingested.

- **n)** Consider activated charcoal **without** Sorbitol 1 gram/kg PO.

- **o)** If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:

 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, **OR** administer 4 mg/0.1 mL IN in one nare.
GG. OVERDOSE/POISONING: INGESTION (Continued)

p) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Aged 28 days to adult: Administer 0.1 mg/kg IVP/IO (titrated)IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare. May be repeated as necessary to maintain respiratory activity. ET dose: 0.2–0.25 mg/kg.

q) Establish IV/IO access with LR in a clean area, if appropriate.

r) If dystonic, extrapyramidal, or mild allergic reaction, consider diphenhydramine 1 mg/kg IVP or IM. Maximum single dose 25 mg. (NEW ’20)

s) If beta-blocker overdose, consider glucagon.
 1 mg IVP (5 years of age up to patient's 18th birthday)
 0.5 mg IVP (28 days - 4 years of age)
 Every 5 minutes as necessary

 t) If calcium channel blocker overdose, consider calcium chloride.
 20 mg/kg (0.2 mL/kg) SLOW IVP/IO (50 mg/min)
 Maximum dose 1 gram

CALCIUM CHLORIDE IS CONTRAINDICATED IN A CALCIUM CHANNEL BLOCKER OVERDOSE PATIENT TAKING DIGOXIN.

u) If organophosphate poisoning, consider atropine.
 0.02 mg/kg IVP/IO or IM
 Maximum single dose 2 mg
 May be repeated every 5–10 minutes

v) If tricyclic overdose, consider sodium bicarbonate.
 1 mEq/kg SLOW IVP/IO (for less than 1 year, dilute 1:1 with LR)

w) Consider antidote to specific agent if available.

x) Consider antibiotic specific to agent in mass casualty incident, if available.
HH. OVERDOSE/POISONING: INHALATION

1. Inclusion Criteria
Presentation may vary depending on the concentration and duration of exposure. Symptoms may include, but are not limited to, the following: nausea, vomiting, diarrhea, altered mental status, abnormal skin color, dyspnea, seizures, burns to the respiratory tract, stridor, sooty sputum, known exposure to toxic or irritating gas, sweating, tearing, constricted/dilated pupils, and/or dizziness.

PULSE OXIMETRY MAY NOT BE ACCURATE FOR TOXIC INHALATION VICTIMS!

IF PATIENT HAS EXPOSURE TO CARBON MONOXIDE/SMOKE INHALATION, REFER TO CARBON MONOXIDE/SMOKE INHALATION PROTOCOL.

2. Treatment
a) Remove patient from the toxic environment by appropriately trained personnel using proper level PPE.

b) Identify agent and mechanism of exposure.

c) Decontaminate as appropriate.

d) Consider obtaining blood sample using closed system, if indicated.

e) Establish IV access with LR in a clean area, if appropriate.

f) If organophosphate poisoning, consider atropine 2–4 mg IVP or IM every 5–10 minutes.

g) Consider antidote to specific agent if available.

h) Consider antibiotic specific to agent in mass casualty incident, if available.
HH. OVERDOSE/POISONING: INHALATION (Continued)

i) Remove patient from the toxic environment by appropriately trained personnel using proper level PPE.

j) Identify agent and mechanism of exposure.

k) Decontaminate as appropriate.

l) Establish IV/IO access with LR in a clean area, if appropriate.

m) If organophosphate poisoning, consider atropine.

0.02 mg/kg IV/IO or IM every 5–10 minutes.

n) Consider antidote to specific agent if available.

o) Consider antibiotic specific to agent in mass casualty incident, if available.
II. OVERDOSE/POISONING: INJECTION

1. Inclusion Criteria
 Patient may exhibit any of the following: local pain, puncture wounds, reddening skin, local edema, numbness, tingling, nausea, vomiting, diarrhea, altered mental status, seizures, muscle twitching, hypoperfusion, metallic or rubbery taste.

2. Treatment
 a) Identify markings (insects, bites, needlestick, etc.).
 b) Do not apply distal and/or proximal constricting bands for a poisonous snakebite to an extremity. Do remove any jewelry on the affected extremity.
 c) Assist patient experiencing moderate to severe allergic reaction symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine (1:1,000) 0.5 mg in 0.5 mL IM or patient’s prescribed fast-acting bronchodilator.
 d) Immobilize extremity.
 e) Apply cool packs for relief of pain only.
 f) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
 g) Establish IV access with LR; administer 20 mL/kg bolus in uninjured extremity. Titrate to a systolic pressure of 90 mmHg.
 h) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 0.4–2 mg IVP/IO (titrated)/IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare. Repeat as necessary to maintain respiratory activity.
 Titrate to adequate respiratory effort.

IF THE SNAKE IS DEAD, AND IF IT IS PRACTICAL, DELIVER IT WITH ITS HEAD INTACT. DEAD SNAKES STILL BITE!
II. OVERDOSE/POISONING: INJECTION (Continued)

i) If organophosphate poisoning, consider atropine. 2–4 mg IVP or IM every 5–10 minutes.

j) Consider antidote to specific agent if available.

k) Consider antibiotic specific to agent in mass casualty incident, if available.

l) Identify markings (insects, bites, needlestick, etc.).

m) Do not apply distal and/or proximal constricting bands for a poisonous snakebite to an extremity. Do remove any jewelry on the affected extremity.

n) Assist patient experiencing moderate to severe allergic reaction symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine (1:1,000) 0.15 mg in 0.15 mL IM or patient’s prescribed fast-acting bronchodilator.

o) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.

p) Establish IV access with LR; administer 20 mL/kg bolus in uninjured extremity. Titrate to a systolic pressure of 90 mmHg.

q) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Aged 28 days to adult: Administer 0.1 mg/kg IVP/IO (titrated)IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare. May be repeated as necessary to maintain respiratory activity. ET dose: 0.2–0.25 mg/kg.

r) If organophosphate poisoning, consider atropine. 0.02 mg/kg IV/IO or IM every 5–10 minutes

s) Consider antidote to specific agent if available.

t) Consider antibiotic specific to agent in mass casualty incident, if available.
JJ. OVERDOSE/POISONING: STIMULANT TOXICITY

1. Inclusion Criteria
 a) Moderate toxicity:
 - Patient exhibits chest pain, hypertension, supraventricular tachycardia, moderate anxiety, respiratory distress, and/or hallucinations
 b) Moderate to severe toxicity:
 - Includes the symptomatology described above along with severe agitation, seizures, and hyperthermia

2. Treatment
 a) Ensure scene is secure and safe from paraphernalia.
 b) Initiate patient care.
 c) Identify amount, route, and time the stimulant was introduced into the body if possible.
 d) Establish IV access with LR. Consider blood draw if possible.
 e) Consider midazolam.
 0.1 mg/kg in 5 mg increments SLOW IVP over 1–2 minutes per increment with maximum single dose 5 mg
 (Reduce by 50% for patients 69 years or older)
 If IV unavailable, 5 mg IN/IM may be administered.
 IN administration max 1 mL per nare
 Larger doses may be needed to treat stimulant toxicity. Additional doses require medical consultation.
 f) Initiate Chest Pain Protocol and treat accordingly with unstable angina or suspected MI.

SUPRAVENTRICULAR TACHYCARDIA (SVT) MAY RESOLVE WITH THE ADMINISTRATION OF MIDAZOLAM. TREATING SVT DUE TO STIMULANT TOXICITY WITH ADENOSINE WILL NOT WORK SINCE THE SUBSTANCE CAUSING THE SVT WILL STILL BE IN THE SYSTEM AND CAUSE REFRACTORY SVT AFTER THE ADENOSINE HAS WORN OFF.
JJ. OVERDOSE/POISONING: STIMULANT TOXICITY (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g)</td>
<td>Ensure scene is secure and safe from paraphernalia.</td>
</tr>
<tr>
<td>h)</td>
<td>Initiate patient care.</td>
</tr>
<tr>
<td>i)</td>
<td>Identify amount, route, and time the stimulant was introduced into the body if possible.</td>
</tr>
<tr>
<td>j)</td>
<td>Establish IV access with LR.</td>
</tr>
<tr>
<td>k)</td>
<td>Consider midazolam 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes with maximum single dose of 5 mg. If IV unavailable, administer 0.2 mg/kg IN to a maximum single dose of 2 mg or 0.2 mg/kg IM to maximum single dose of 5 mg. IN administration max 1 mL per nare Additional doses (up to a maximum total dose of 5 mg) require medical consultation.</td>
</tr>
</tbody>
</table>
KK. EXCITED DELIRIUM SYNDROME (ExDS)

1. Inclusion Criteria
 a) Excited delirium syndrome (ExDS) is a potentially life-threatening condition in which a person is in a psychotic and extremely agitated state. Mentally, the subject is unable to process rational thoughts or to focus their attention. Physically, the body's systems are functioning at such a high rate that they begin to shut down and fail. When these two factors occur at the same time, a person can act erratically enough that they become a danger to self and to the public.

 b) History of present illness often includes:
 (1) Ingestion of a stimulant or hallucinogenic drug
 (2) Drug/alcohol withdrawal
 (3) Psychiatric patient who is off of medication

 c) Signs and symptoms: ExDS is characterized as having a minimum of bizarre and aggressive behavior and one of the above history. The more signs and symptoms the patient exhibits, the more likely the patient is to have ExDS and the higher the risk for complications.
 (1) Tachycardia
 (2) Hypertension
 (3) High body temperature
 (4) Dilated pupil
 (5) Incoherent or nonsensical speech
 (6) Rapid or inconsistent breathing patterns
 (7) Paranoia
 (8) Skin changes:
 (a) Hot/dry skin (in the anticholinergic patient)
 (b) Profuse sweating (in the cocaine/MDMA/methamphetamine patient)
 (9) Shivering
 (10) Inappropriate removal of clothing
 (11) Patients who present after receiving multiple TASER or other less lethal energy by law enforcement

MANY LIFE-THREATENING MEDICAL EMERGENCIES PRESENT WITH SIMILAR SIGNS OF EXDS. EXAMPLES INCLUDE HYPOGLYCEMIA, HYPOXIA, SEIZURES, HEAD INJURIES, AND SEPSIS. EMS CLINICIANS MUST ALWAYS ASSESS FOR THE POSSIBILITY OF OTHER EMERGENCY MEDICAL CAUSES FOR THE PATIENT'S PRESENTATION.

ANOTHER KEY SYMPTOM THAT OCCURS JUST PRIOR TO THE ONSET OF SUDDEN DEATH IN A PATIENT EXPERIENCING EXDS IS “INSTANT TRANQUILITY.” THIS SYMPTOM IS NOTED WHEN A PATIENT WHO HAS BEEN VERY VIOLENT AND AGITATED SUDDENLY BECOMES QUIET AND LEATHARGIC. THIS IS A SIGN OF IMMINENT CARDIOPULMONARY ARREST. PATIENTS WHO HAVE UNDERGONE PERIODS OF PROLONGED PHYSICAL STRUGGLE WITHOUT SEDATION WITH MEDICATION ARE AT HIGH RISK FOR CARDIAC ARREST. ALL EFFORTS MUST BE MADE BY ALS CLINICIANS TO EXPEDITIOUSLY ADMINISTER MEDICATION TO THE AGITATED AND STRUGGLING EXDS PATIENT.
2. Treatment (BLS)
 a) Ensure scene is secure and safe.
 b) Initiate patient care.
 (1) Obtain a measured temperature, as these patients often have severe hyperthermia.
 (2) If possible, attempt to identify the amount, route, and time of any substance ingested.
 (3) Suspected ExDS patients with evidence of head injury or traumatic mechanism of injury should receive Spinal Protection Protocol.
 c) Patients displaying signs of ExDS do not have medical capacity to refuse care.
 (1) If a suspected ExDS patient resists the delivery of care, ALS resources, EMS supervisors (where available), and law enforcement shall be requested to facilitate the treatment and transport of the patient in a safe and effective manner.
 (2) Patients who exhibit violent behavior shall require a police officer to accompany the patient during transport. Appropriate physical restraint procedures should be utilized per Restraint Protocol.

PATIENTS DISPLAYING SIGNS AND SYMPTOMS OF EXDS SHALL BE TREATED AND TRANSPORTED AT THE ADVANCED LIFE SUPPORT LEVEL. ALS CARE AND TREATMENT WILL BE GUIDED BY THE SIGNS AND SYMPTOMS THAT THE PATIENT IS EXHIBITING, AS WELL AS POSSIBLE OCCULT INJURIES THAT MAY HAVE OCCURRED WHILE THE INDIVIDUAL WAS BEING SUDBUED. THE APPROPRIATE LIFESAVING TREATMENT FOR EXDS IS THE ADMINISTRATION OF MEDICATION, FLUID RESUSCITATION, AND DECREASING HYPERTHERMIC CORE BODY TEMPERATURE.

PATIENTS WHO HAVE RECEIVED MULTIPLE ROUNDS OF ENERGY FROM CONDUCTED ELECTRICAL WEAPONS (INCLUDING T.A.S.E.R.) AND ARE DISPLAYING SIGNS OF EXDS ARE AT HEIGHTENED RISK FOR SUDDEN CARDIAC DEATH. THESE PATIENTS SHOULD BE TREATED WITH MEDICATION AND CLOSELY MONITORED FOR ANY EVIDENCE OF HEMODYNAMIC COLLAPSE.

d) Establish IV/IO access. Consider blood draw if possible.
e) Administer 20 mL/kg IV fluid bolus LR if tachycardic and/or hyperthermic.
f) Check glucometer and treat accordingly.
g) Administer ketamine.
 (1) Administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg.
 (a) If severe agitation persists, administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg. Maximum total IV/IO dose 200 mg.
 (b) If agitation persists after second dose of ketamine, consider midazolam 2.5 mg IV/IO.
 (2) If IV/IO unavailable:
 (a) Administer 4 mg/kg IM. Maximum total IM dose 400 mg.
 (b) If severe agitation persists after IM ketamine dose, administer midazolam 5 mg IM.
 (c) Additional dose of 4 mg/kg IM ketamine for persistent agitation requires medical consultation.
KK. EXCITED DELIRIUM SYNDROME (ExDS) (Continued)

h) Consider the administration of cold packs to the groin, neck, and axilla for patients displaying evidence of hyperthermia.

ALERT

PATIENTS DISPLAYING SIGNS AND SYMPTOMS OF EXDS SHOULD NOT RECEIVE HALDOL AND/OR BENADRYL FOR CHEMICAL RESTRAINT. THESE MEDICATIONS MAY WORSEN AN ANTICHOLINERGIC CRISIS. HALDOL MAY INCREASE THE POSSIBILITY OF CARDIAC DYSRHYTHMIA BY PROLONGING THE QT INTERVAL, AND MAY ALSO INCREASE THE CHANCES OF A SEIZURE BY LOWERING THE BODY’S SEIZURE THRESHOLD.

i) Establish IV/IO access. Consider blood draw if possible.

j) Administer 20 mL/kg IV fluid bolus LR if tachycardiac and/or hyperthermic.

k) Check glucometer and treat accordingly.

l) Administer ketamine.

1) Patients who have not yet reached their 13th birthday require medical consultation: Administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg. Maximum total IV/IO dose 200 mg.

2) Patients aged 13 years who have not yet reached their 18th birthday: Administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg. Maximum total dose 200 mg.

3) If severe agitation persists, administer repeat dose 1 mg/kg IV/IO to a maximum single dose of 100 mg.

4) If agitation persists after second dose of IV/IO ketamine, consider midazolam 0.1 mg/kg SLOW IVP/IO over 1–2 minutes. Maximum single dose 2.5 mg.

5) If IV/IO is unavailable:

 a) Patients who have not yet reached their 13th birthday require medical consultation: Administer 4 mg/kg IM. Maximum IM dose 400 mg.

 b) Patients aged 13 years to not yet reached their 18th birthday: Administer 4 mg/kg IM. Maximum IM dose 400 mg.

 c) If severe agitation persists, administer midazolam 2.5 mg IM.

 d) Additional dose of 4 mg/kg IM ketamine for persistent agitation requires medical consultation.

m) Consider the administration of cold packs to the groin, neck, and axilla for patients displaying evidence of hyperthermia.
LL. PAIN MANAGEMENT

1. Inclusion Criteria
 Pain may be present in many different conditions. Management of pain in the field can help to reduce suffering, make transport easier, and allow the emergency department personnel to initiate specific treatment sooner.

2. Treatment Indications
 a) Measure level of pain. Ask adults to rate their pain on a scale from 0 (no pain) to 10 (worst pain imaginable). Young children can be asked to rate their pain using the FACES scale, which provides 5 levels of pain perception.
b) Allow patient to remain in position of comfort unless contraindicated.
c) Monitor airway and vitals signs every 5 minutes for unstable patients.
d) Mild pain

(1) Indications for pain management
 (a) Isolated musculoskeletal injuries such as sprains and strains
 (b) Pain related to childhood illnesses such as headache, ear infection, and pharyngitis

(2) Contraindications for pain management with acetaminophen
 (a) Head injury
 (b) Hypotension
 (c) Administration of acetaminophen or medications containing acetaminophen within the previous four hours
 (d) Inability to swallow or take medications by mouth
 (e) Respiratory distress
 (f) Persistent vomiting
 (g) Known or suspected liver disease
 (h) Allergy to acetaminophen

(3) Administer acetaminophen to patients ages 2 years and above judged to be in mild to moderate discomfort.
 (2–5 on FACES scale) by child or parent.
 (a) Standard unit dosing of liquid preparation:
 (i) Less than 2 years of age: Not indicated
 (ii) 2–4 years: Unit dose 160 mg/5 mL
 (iii) 5–12 years: TWO unit doses of 160 mg/5 mL each for a total of 320 mg/10 mL
 (iv) 13 years and older: FOUR unit doses of 160 mg/5 mL each for a total of 640 mg/20 mL OR in a form of 325 mg pill or tablet X 2 for a total of 650 mg with sips of water as tolerated by the patient.

ADMINISTRATION OF ACETAMINOPHEN FOR MILD TO MODERATE PAIN DOES NOT ELIMINATE THE NEED FOR TRANSPORT OF THE PATIENT TO THE HOSPITAL TO RECEIVE A COMPREHENSIVE EVALUATION OF THE CAUSE OF THEIR PAIN AND APPROPRIATE DEFINITIVE TREATMENT.

e) Moderate to severe pain

(1) Indications for pain management
 (a) The patient reports moderate to severe pain.
 (b) In the clinician’s judgment, the patient will benefit from treatment with an analgesic, including patients who are MOLST and/or EMS/DNR patients or being pre-medicated for a procedure.
LL. PAIN MANAGEMENT (Continued)

(2) Contraindications for pain management
 (a) Hypersensitivity or known allergy to the medication
 (b) Uncorrected respiratory distress or hypoxemia refractory to supplemental oxygen
 (c) Uncorrected hypotension, defined as a persistent systolic pressure less than 90 mmHg

(3) Administer agent
 (a) Fentanyl IN preferred IV/IO/IM
 (i) Administer 1 mcg/kg to a maximum initial dose of 200 mcg (For IN route, dosing may be limited due to volume limitations - administration of max 1mL per nare).
 (ii) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of fentanyl 1 mcg/kg to a maximum dose of 200 mcg.
 (iii) Obtain on-line medical direction for additional doses, if required.
 OR
 (b) Morphine IV/IM
 (i) Administer 0.1 mg/kg maximum single dose of 20 mg.
 (ii) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of morphine 0.05 mg/kg to a maximum additional dose of 10 mg.
 (iii) Obtain on-line medical direction for additional doses, if required.
 OR
 (c) Ketamine IV/IO/IN/IM
 (i) Administer 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 a. Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 b. If IV unavailable, administer 0.5 mg/kg IN/IM (If delivery device is available; divide administration of the dose equally between the nares to a maximum of 1 mL per nare).
 c. Reassess in 15 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.5 mg/kg IN/IM.

 OR
 (d) Ketorolac IV/IM (NEW '20)
 (i) Administer single dose of 15 mg IV only. No repeat doses.
 (ii) If IV unavailable, administer single dose of 30 mg IM. No repeat doses.

INDICATED FOR MUSCULOSKELETAL EXTREMITY/BACK PAIN. NOT FOR CHEST PAIN, ABDOMINAL/FLANK PAIN, OR HEADACHE.
LL. PAIN MANAGEMENT (Continued)

(e) **Fentanyl IN.** If IN route not accessible, IV/IO/IM
 (i) Administer 1 mcg/kg to a maximum initial dose of 200 mcg (For IN route, dosing may be limited due to volume limitations - administration of max 1mL per nare).
 (ii) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of fentanyl 1 mcg/kg to a maximum dose of 200 mcg.
 (iii) Obtain on-line medical direction for additional doses, if required.

 OR

(f) **Morphine IV/IM**
 (i) Administer 0.1 mg/kg maximum single dose of 20 mg.
 (ii) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of morphine 0.05 mg/kg to a maximum additional dose of 10 mg.
 (iii) Obtain on-line medical direction for additional doses, if required.

 OR

(g) **Ketamine IV/IO/IN/IM**
 (i) Administer 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 a. Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 b. If IV unavailable, administer 0.5 mg/kg IN/IM (if delivery device is available; divide administration of the dose equally between the nares to a maximum of 1 mL per nare).
 c. Reassess in 15 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.5 mg/kg IN/IM

 INDICATED FOR MUSCULOSKELETAL EXTREMITY/BACK PAIN. NOT FOR CHEST PAIN, ABDOMINAL/FLANK PAIN, OR HEADACHE.

 OR

(h) **Ketorolac IV/IM (NEW '20)**
 (i) Patients who have not yet reached their 2nd birthday: Contraindicated.
 (ii) Age 2 to patients who have not yet reached their 18th birthday: Administer 0.5 mg/kg IV to a maximum total dose of 15 mg. No repeat doses.
 (iii) If IV is unavailable, administer 1 mg/kg IM to a maximum total dose of 30 mg. No repeat doses.
LL. PAIN MANAGEMENT (Continued)

CHEST PAIN THAT IS THOUGHT TO BE DUE TO ACUTE CORONARY SYNDROME SHOULD INITIALLY BE MANAGED WITH NITROGLYCERIN. IF PAIN REMAINS REFRACTORY TO NITROGLYCERIN, CONSIDER THE USE OF OPIOID ANALGESIA. AVOID OPIOIDS FOR PATIENTS WITH SUSPECTED EXACERBATION OF CONGESTIVE HEART FAILURE.

USE OPIOID ANALGESIA WITH CAUTION IN THE MANAGEMENT OF THE MULTIPLE TRAUMA PATIENT. OBSERVE FOR EVIDENCE OF HYPOTENSION AND CORRECT AS NEEDED WITH FLUID BOLUSES. REASSESS VITAL SIGNS AFTER ADMINISTRATION OF THE MEDICATION.

USE ANALGESIA WITH CAUTION IN THE MANAGEMENT OF PATIENTS WITH ALTERED MENTAL STATUS. OBSERVE FOR RESPIRATORY DEPRESSION AND TAKE STEPS AS NEEDED TO ENSURE A STABLE AIRWAY.

(4) Repeat. Measure level of pain and monitor the patient’s level of pain during subsequent treatment and transport.

PATIENTS WHO HAVE RECEIVED A PARENTERAL (IV/IO/IM/IN) DOSE OF OPIOID, BENZODIAZEPINE, OR KETAMINE FROM SENDING FACILITY OR ALS MUST BE TRANSPORTED BY ALS (NEW '20):

- IF ANY OF THE ABOVE MEDICATIONS WERE GIVEN WITHIN THE PAST 1 HOUR OR
- IF THE PATIENT HAS AN ALTERED MENTAL STATUS WITHOUT RETURN TO THEIR BASELINE AFTER RECEIVING ANY OF ABOVE MEDICATIONS OR
- IF THE PATIENT HAS POTENTIAL FOR RESPIRATORY COMPROMISE (RR<14, OXYGEN SATURATION LESS THAN 94%, CLINICIAN JUDGMENT) AFTER RECEIVING ANY OF THE ABOVE MEDICATIONS.
MM. ALLERGIC REACTION

1. Inclusion Criteria
 a) An allergic reaction is an exaggerated response of the body’s immune system to any substance.
 b) Allergic reactions may range from mild to severe life-threatening anaphylactic reactions.

 (1) MILD: Local swelling and itching at the site

 (2) MODERATE: Hives and/or mild wheezing

 (3) SEVERE: Diffuse wheezing, pharyngeal swelling, dyspnea, hypoperfusion, abnormal skin color, stridor, and/or loss of peripheral pulses

2. Treatment
 a) Assist patient experiencing moderate symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine auto-injector or manual (1:1,000) 0.5 mg in 0.5 mL IM or patient’s prescribed fast-acting bronchodilator.

 b) Albuterol inhaler (2 puffs) may be repeated once within 30 minutes.

 c) Consider additional doses of epinephrine (1:1,000) 0.5 mg in 0.5 mL IM or prescribed fast-acting bronchodilator.

 d) Moderate Distress
 Administer epinephrine 1:1,000.
 0.5 mg in 0.5 mL
 May repeat every 5 minutes for total of 3 doses for severe reactions.
 Additional doses of epinephrine require medical consultation.

 (1) Establish IV access with LR; administer 20 mL/kg bolus.
 Titrate to a systolic pressure of 90 mmHg.

 (2) Administer diphenhydramine.
 50 mg SLOW IVP or IM
 Additional doses of diphenhydramine require medical consultation.

 (3) Administer a combination of albuterol/Atrovent via nebulizer.
 Albuterol 2.5 mg and Atrovent 500 mcg

 (4) If further treatments are indicated, an additional albuterol-only nebulizer may be given.
MM. ALLERGIC REACTION (Continued)

e) Mild Allergic Reaction (NEW ’20)

(1) Consider diphenhydramine. 25 mg SLOW IV or IM

OR

(2) Consider epinephrine (1:1,000) 0.5 mg in 0.5 mL IM if patient has a history of life-threatening allergic reaction to the same allergen.

f) Assist patient experiencing moderate or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine (1:1,000).

Less than 5 years of age: 0.15 mg in 0.15 mL IM
5 years of age or greater: 0.5 mg in 0.5 mL IM
or patient’s prescribed fast-acting bronchodilator.

g) Albuterol inhaler (2 puffs) may be repeated once within 30 minutes.

h) Consider additional doses of epinephrine (1:1,000)

Less than 5 years of age: 0.15 mg in 0.15 mL IM
5 years of age or greater: 0.5 mg in 0.5 mL IM
or fast-acting bronchodilator.

i) Moderate Distress

Less than 5 years of age: 0.15 mg in 0.15 mL IM.
5 years of age or greater: 0.5 mg in 0.5 mL IM.
May repeat every 5 minutes for total of 3 doses for severe reactions.

Additional doses of epinephrine require medical consultation.

(1) Establish IV/IO access with LR.
(2) If age-related vital signs and patient's condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR IV/IO.

Administer diphenhydramine.
1 mg/kg SLOW IVP or IM
Maximum single dose 50 mg

Additional doses of diphenhydramine require medical consultation

(3) A combination of albuterol/Atrovent® via nebulizer:
• For an infant less than 1 year of age, administer albuterol 1.25 mg via nebulizer; Atrovent® is contraindicated.
• For a child 1 year of age or greater, but less than 2 years of age, administer albuterol 1.25 mg and Atrovent® 250 mcg.
• For a patient 2 years of age or greater, administer albuterol 2.5 mg and Atrovent® 500 mcg.

(4) If further treatments are indicated, an additional albuterol-only nebulizer may be given.

j) Mild Allergic Reaction (NEW ’20)

(1) Consider diphenhydramine. 1 mg/kg SLOW IV or IM. Maximum single dose 25 mg.

OR

(2) Consider epinephrine (1:1,000) if patient has a history of life-threatening allergic reaction to the same allergen.
(a) Less than 5 years of age: 0.15 mg in 0.15 mL IM.
(b) 5 years of age or greater: 0.5 mg in 0.5 mL IM.
NN. ANAPHYLAXIS

1. Inclusion Criteria
 a) Anaphylaxis is a condition defined by respiratory and/or cardiovascular collapse resulting from an exaggerated response of the body’s immune system to any substance.
 b) Anaphylaxis is likely to present with one or more of the following:
 (1) Acute onset of illness after exposure to a known allergen with two or more of the following:
 (a) urticaria of skin and/or mucosa or acute swelling/edema (eg, tongue, airway, stridor, lips)
 (b) respiratory compromise
 (c) hypotension
 (d) persistent GI symptoms of vomiting, abdominal pain, or diarrhea
 (2) Acute onset of illness after exposure to a known allergen with hypotension

2. Treatment
 a) Assist patient experiencing moderate to severe symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine auto-injector or manual (1:1,000) 0.5 mg in 0.5 mL IM or patient’s prescribed fast-acting bronchodilator.
 b) Consider additional doses of epinephrine (1:1,000) 0.5 mg in 0.5 mL IM.
 c) Additional treatments to consider AFTER administration of the initial dose of epinephrine
 (1) Albuterol inhaler (2 puffs) may be repeated once within 30 minutes.
 (2) Epinephrine (1:1,000) 0.5 mg in 0.5 mL IM
 (3) May repeat epinephrine IM every 5 minutes for a total of 3 doses for severe reactions.
 (4) For patients who are in extremis with severe hypotension or impending respiratory failure, consider initiating an epinephrine drip after having administered 3 doses of IM epinephrine.
 (a) Initiate epinephrine infusion
 (i) Add 1 mg of epinephrine (either 1:1,000 or 1:10,000) in a 100 mL bag of LR or NS
 (ii) Use a Microdrip set (60 drops/mL) for infusion administration
 (iii) Adult epinephrine infusion dosage:
 (1) Administer infusion through a free-flowing IV, ideally 20 gauge or larger, or by IO
 (2) Start infusion at 1 mL/min (60 drops/min) IV/IO
 (3) Check blood pressure every 5 minutes. If MAP is less than 65 mmHg or systolic blood pressure is less than 90 mmHg, increase to a maximum rate of 2 mL/min (120 drops/min).
NN. ANAPHYLAXIS (Continued)

(4) If above blood pressure goals are not met upon reaching maximum rate, obtain online medical consultation.

e) Additional treatments to consider AFTER administration of the initial dose of epinephrine
(1) Albuterol/Atrovent® via nebulizer: albuterol 2.5 mg and Atrovent® 500 mcg; may repeat albuterol neb 2.5 mg one time
(2) Diphenhydramine 50 mg SLOW IVP or IM
(3) Establish IV access with LR
(4) Administer 20 mL/kg bolus for hypotension
(5) Dexamethasone 10 mg IV/IO

f) Assist patient experiencing severe symptoms with the patient’s prescribed or EMS service’s epinephrine:
(1) Less than 5 years of age: 0.15 mg IM in the lateral thigh via epinephrine auto-injector or manual administration 0.15 mg in 0.15 mL IM
(2) 5 and greater: administer 0.3 mg IM in the lateral thigh via epinephrine auto-injector or manual administration 0.5 mg in 0.5 mL IM
(3) Consider additional doses of epinephrine (1:1,000) 0.5 mg in 0.5 mL IM.
(4) Additional treatments to consider AFTER administration of the initial dose of epinephrine
(a) Albuterol MDI inhaler (2 puffs) may be repeated once within 30 minutes.

(5) Less than 5 years of age: administer 0.15 mg in 0.15 mL IM
(6) 5 and greater: administer 0.5 mg in 0.5 mL IM
(7) May repeat every 5 minutes for a total of 3 doses for severe reactions.
(8) Consider pediatric epinephrine infusion for refractory anaphylactic shock. (NEW ’20)

g) Additional treatments to consider AFTER administration of the initial dose of epinephrine
(1) Albuterol/Atrovent® via nebulizer
 (a) For an infant less than 1 year of age, administer albuterol 1.25 mg via nebulizer; Atrovent® is contraindicated.
 (b) For a child 1 year of age or greater, but less than 2 years of age, administer albuterol 1.25 mg and Atrovent® 250 mcg.
 (c) For a child 2 years of age or greater, administer albuterol 2.5 mg and Atrovent® 500 mcg.
 (d) If further respiratory treatments are needed, an additional albuterol-only nebulizer may be given.
(2) Diphenhydramine 1 mg/kg SLOW IVP or IM
(3) Establish IV access with LR
(4) Administer 20 mL/kg bolus for hypotension
(5) Dexamethasone 0.5 mg/kg to a maximum of 10 mg IV/IO
1. Inclusion Criteria
 Patient with suspected exposure to chlorine or phosgene who may exhibit any of the following: wheezing and/or crackles, abnormal respiratory rate, rapid heart rate, stridor, grunting, cyanosis, mottled skin, altered mental status, nasal flaring, retractions, accessory muscle use, dyspnea, diminished or absent breath sounds, and/or tripod positioning.

ENSURE BSI AND DECONTAMINATION OF THE PATIENT WITH SUSPECTED CHLORINE OR PHOSGENE EXPOSURE.

2. Treatment
 a) For patients with dyspnea with wheezing or symptoms related to broncho-spasm, treat with bronchodilators and dexamethasone per Asthma/COPD Protocol.
 b) For patients with dyspnea and rales or suspected pulmonary edema, treat supportively with oxygen and CPAP, as indicated per CHF Protocol.

SYMPTOMS OF CHLORINE/PHOSGENE EXPOSURE CAN BE DELAYED FOR UP TO 48 HOURS. PATIENTS MAY RAPIDLY DETERIORATE ONCE SYMPTOMS PRESENT.
PP. RESPIRATORY DISTRESS: ASTHMA/COPD

1. Inclusion Criteria
Patient may exhibit any of the following: wheezing and/or crackles, abnormal respiratory rate, rapid heart rate, stridor, grunting, cyanosis, mottled skin, altered mental status, nasal flaring, retractions, accessory muscle use, dyspnea, diminished or absent breath sounds, and/or tripod positioning.

2. Treatment

CONSIDER MEDICAL CONSULTATION FOR PATIENTS WITH A CARDIAC HISTORY.

a) Assist patient experiencing moderate to severe symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed fast-acting bronchodilator or prescribed epinephrine auto-injector.

b) Use of the EMS service’s manual epinephrine (1:1,000) 0.5 mg in 0.5 mL or 0.3 mg via epinephrine auto-injector IM requires medical consultation.

c) Albuterol inhaler (2 puffs) may be repeated once within 30 minutes.

d) Consider additional doses of patient’s prescribed fast-acting bronchodilator or manual epinephrine (1:1,000) 0.5 mg in 0.5 mL or 0.3 mg via epinephrine auto-injector IM.

e) Establish IV access with LR on all Priority 1 or 2 patients and all patients with a history of cardiac disease.

f) Patients with moderate to severe respiratory distress may require high flow oxygen via non-rebreather mask, continuous positive airway pressure (CPAP), or BVM while receiving medication via nebulizer.

 g) Administer a combination of albuterol/Atrovent® via nebulizer. Albuterol 2.5 mg and Atrovent® 500 mcg

h) If further treatments are indicated, an additional albuterol-only nebulizer may be given.

i) Consider CPAP if patient continues to deteriorate in spite of above nebulized treatments. Continue inline nebulizations.

j) Consider the administration of epinephrine 1:1,000. 0.3 mg IM in the lateral thigh via epinephrine auto-injector or 0.5 mg in 0.5 mL IM
May repeat every 5 minutes for a total of 3 doses for severe reactions.

k) For moderate to severe exacerbations, consider the administration of dexamethasone 10 mg IV/PO.

l) For moderate to severe exacerbations, consider the administration of magnesium sulfate 1–2 grams, mixed in 50–100 mL of approved diluent, IV/IO over 10–20 minutes.
RESPIRATORY DISTRESS: ASTHMA/COPD (Continued)

m) Consider additional doses of epinephrine or albuterol.

n) Assist patient(s) experiencing moderate to severe symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service's epinephrine (1:1,000) 0.15 mg in 0.15 mL IM or patient’s prescribed fast-acting bronchodilator.

MEDICAL CONSULTATION IS REQUIRED IF THE PATIENT HAS CONGENITAL HEART OR CHRONIC LUNG DISEASE.

o) Fast-acting bronchodilator (2 puffs) may be repeated once within 30 minutes.

p) Consider additional doses of patient’s prescribed fast-acting bronchodilator or epinephrine (1:1,000) 0.15 mg in 0.15 mL IM.

q) Patients with moderate to severe respiratory distress may require high flow oxygen via non-rebreather mask, CPAP, or BVM while receiving medication via nebulizer.

r) Administer a combination of albuterol/Atrovent via nebulizer:
 (1) For an infant less than 1 year of age, administer albuterol 1.25 mg via nebulizer; Atrovent is contraindicated.
 (2) For a child 1 year of age or greater, but less than 2 years of age, administer albuterol 1.25 mg and Atrovent 250 mcg.
 (3) For a patient 2 years of age or greater, administer albuterol 2.5 mg and Atrovent 500 mcg.

s) If further treatments are indicated, an additional albuterol-only nebulizer may be given.

AND/OR

MEDICAL CONSULTATION IS REQUIRED IF THE PATIENT HAS CONGENITAL HEART OR CHRONIC LUNG DISEASE.

t) Administer epinephrine 1:1,000.
 Less than 5 years of age: 0.15 mg IM in the lateral thigh via epinephrine auto-injector or manual administration 0.15 mg in 0.15 mL IM
 5 years and greater: administer 0.3 mg IM in the lateral thigh via epinephrine auto-injector or manual administration 0.5 mg in 0.5 mL IM
 May repeat every 5 minutes for a total of 3 doses for severe reactions.

u) For moderate to severe exacerbations, consider the administration of dexamethasone 0.5 mg/kg PO/IV up to a maximum dose of 10 mg.

v) Consider magnesium sulfate 50 mg/kg IV/IO to a max of 2 grams given over 10–20 minutes (mixed in 50 - 100 mL of approved diluent).

MAGNESIUM ADMINISTRATION OFTEN CAUSES HYPOTENSION IN CHILDREN. CONSIDER ADMINISTERING BOLUS 20 ML/KG OF LACTATED RINGER’S WITH THE ADMINISTRATION OF MAGNESIUM.

w) Consider additional doses of albuterol or epinephrine.
QQ. RESPIRATORY DISTRESS: CROUP

1. Inclusion Criteria
 Forms of Croup:
 Mild - Barky cough exhibited without stridor at rest (Priority 2)
 Moderate - Barky cough with stridor at rest without agitation, may exhibit mild respiratory distress (Priority 2)
 Severe - Stridor at rest, signs of severe respiratory distress that is associated with agitation or decreased level of consciousness (Priority 1)

 IF EPIGLOTTITIS IS SUSPECTED, I.E., DROOLING WITH ABOVE SIGNS AND SYMPTOMS, DO NOT INITIATE THIS PROTOCOL WITHOUT APPROPRIATE MEDICAL DIRECTION.

2. Treatment
 a) Ensure that the patient has a patent airway and adequate respiratory effort. Assess respiratory status looking specifically for signs and/or symptoms of respiratory distress (nasal flaring, retractions, increased/decreased respirations, skin color, change in level of consciousness).
 b) Place patient on cardiac monitor and record vital signs. (This may be done concurrently with medication administration if patient is unstable.)
 c) **MILD**: For children exhibiting symptoms of a mild croup presentation, administer dexamethasone 0.5 mg/kg PO up to a maximum dose of 10 mg.
 d) **MODERATE**: For children who exhibit symptoms of a moderate croup presentation, administer dexamethasone 0.5 mg/kg PO up to a maximum dose of 10 mg. If no change in patient’s condition, then administer 2.5 mL of epinephrine 1:1,000 via nebulizer.
 e) **SEVERE**: If respiratory distress is so severe that respiratory arrest is imminent:
 (1) First, administer 0.01 mg/kg of epinephrine 1:1,000 IM (max single dose of 0.5 mg).
 (2) Then administer dexamethasone 0.5 mg/kg IV up to a maximum dose of 10 mg AND 2.5 mL of epinephrine 1:1,000 via nebulizer. If IV not established, give IM dexamethasone.
 f) Establish communications with the appropriate facility and obtain medical direction if patient is less than 1 year of age, if additional nebulized epinephrine is needed due to level of distress, or if other interventions or directions are needed.

 ALL PATIENTS WHO RECEIVE NEBULIZED EPINEPHRINE MUST BE TRANSPORTED BY AN ADVANCED LIFE SUPPORT UNIT TO THE APPROPRIATE MEDICAL FACILITY.
RR. RESPIRATORY DISTRESS: PULMONARY EDEMA/CONGESTIVE HEART FAILURE

1. Inclusion Criteria

Accurate diagnosis of congestive heart failure (CHF)/acute pulmonary edema (APE) as the cause of respiratory distress can be challenging. The most accurate identification of CHF/APE is made using the medical history, risk factors, medications, and physical exam with interpretation of blood pressure. CHF/APE is difficult to distinguish, at times, from other respiratory causes. Factors most associated with a short-of-breath patient having CHF include: a history of CHF, exam features of jugular venous distension and EKG evidence of atrial fibrillation. CHF patients are commonly on anti-hypertensive and cardiac medicines. Orthopnea (use of additional pillows to prop the head up during sleep), Dyspnea on Exertion and Paroxysmal Nocturnal Dyspnea (PND) are symptoms associated with CHF/APE. Blood pressure is frequently elevated, usually greater than 160/100 but not uncommonly greater than 180/120.

EMS clinicians should strongly consider CHF/APE in patients possessing the factors above, presenting with acute respiratory distress, tachypnea, hypoxia, rales, or wheezing and marked hypertension, even in the absence of peripheral edema.

GERIATRIC PATIENTS DEMONSTRATING MARKED HYPERTENSION IN ASSOCIATION WITH SHORTNESS OF BREATH/RESPIRATORY DISTRESS AND WHEEZING (IN THE ABSENCE OF ASTHMA OR INFECTION) STRONGLY SUGGESTS CHF/APE.

Acute Respiratory Distress from CHF may range from mild to severe, life-threatening cases of Acute Pulmonary Edema. This classification is for patients with Systolic BP greater than 110 mmHg.

a) Asymptomatic – dyspnea on exertion but no symptoms at rest.

b) Mild – mild dyspnea at rest, despite O₂ treatment. Able to speak in full sentences.

c) Moderate – moderate dyspnea. O₂ saturation less than 93% on oxygen. Systolic BP usually greater than 150. Unable to speak in full sentences. Normal mental status.

d) Severe – severe dyspnea, respiratory failure, hypoxia (O₂ saturation less than 90% on oxygen), diaphoresis, Systolic BP commonly greater than 180. One word sentences, altered consciousness.

The goals of treatment are to reduce the pressure of blood returning to the heart (preload) and the resistance that the left ventricle must pump against (afterload). The most effective and safe medication for these goals is nitroglycerin (NTG).
2. Treatment

a) Position patient in High Fowler’s position.

b) Rate the patient’s difficulty breathing on a scale where 0 is “no trouble breathing” and 10 is “the worst trouble breathing.”

c) Continuous positive airway pressure (CPAP) should be considered for moderate dyspnea and must be implemented in severe dyspnea. (Use early; attempt to administer 3 doses of NTG while setting up, acclimatizing the patient, and applying CPAP.)

PERFORM 12-LEAD EKG (IF AVAILABLE), AND IF INFERIOR WALL WITH POSTERIOR WALL EXTENSION MI IS PRESENT, WITHOLD NTG. CONSULT FOR FURTHER ADMINISTRATION.

d) Establish IV access with LR.

e) Identify rhythm and treat according to appropriate algorithm.

f) For patients with hypertension and moderate to severe symptoms, administer NTG (does not require IV before administration). If SBP drops below 90 mmHg, treat with medical fluid bolus: initial bolus 250–500 mL, may repeat once.

(1) Asymptomatic - apply oxygen per GPC to maintain \(O_2 \) saturation greater than 93%.

(2) Mild - administer low-dose NTG 0.4 mg SL at 3–5 minute intervals, to a maximum dose of 1.2 mg.

(3) Moderate and severe - CPAP is preferred therapy. Until CPAP is applied, administer high-dose NTG. Assess BP before each administration.

CPAP IS THE PREFERRED THERAPY. DO NOT REMOVE CPAP TO CONTINUE ADMINISTERING NTG.

High Dose NTG until CPAP is applied or if CPAP is not tolerated. (Dose at 3–5 minute intervals.)

(4) Administer 1 dose of NTG 0.4 mg SL and apply 1 inch of NTG paste.

(5) Administer 1 dose of NTG 0.8 mg SL.

(6) Continue 0.8 mg SL NTG dosing to achieve a 20% reduction in SBP.

IF BLOOD PRESSURE IS LOW, CONSIDER SMALL FLUID BOLUS(ES) FOLLOWED BY EPINEPHRINE.

g) Consider epinephrine infusion (1 mg epinephrine in 100 mL LR), starting at 1 mL/min (60 drops/min). Titrate to systolic BP of 90 mmHg. Maximum rate of 2 mL/min (120 drops/min). IV infusion pump preferred.
RR. RESPIRATORY DISTRESS: PULMONARY EDEMA/CONGESTIVE HEART FAILURE (Continued)

MEDICAL CONSULTATION IS REQUIRED IF THE PATIENT HAS CONGENITAL HEART OR CHRONIC LUNG DISEASE.

h) Position patient in semi-Fowler’s position.

i) Establish IV access with LR.

j) Identify rhythm and treat according to appropriate algorithm.

k) Patients with moderate to severe respiratory distress may require high flow oxygen via non-rebreather mask, CPAP, or BVM while receiving medication via nebulizer.

l) Consider albuterol.
 For children less than 2 years, albuterol 1.25 mg
 For children greater than or equal to 2 years, albuterol 2.5 mg

m) Consider morphine.
 0.1 mg/kg SLOW IVP/IO/IM (1–2 mg/min)
 Maximum dose 5 mg

n) Consider epinephrine infusion with medical consultation.

3. Consider transport to the pediatric specialty center that follows patient.
6. UNIVERSAL ALGORITHM FOR PEDIATRIC RESPIRATORY DISTRESS FOR BLS

Assess Responsiveness

Not Responsive
Assess ABCs

Go to Universal Algorithm for Pediatric Emergency Cardiac Care for BLS

Responsive
Assess Breathing

If respiratory with adequate rate and effort (b):
Oxygen 90–100% via non-rebreather mask

If respiratory with inadequate rate and effort: (a)
BVM with 100% oxygen at 12–20 breaths/min

Suspected Cause

Acute onset of upper airway symptoms:
Stridor, head bobbing, drooling
Assess/treat for foreign body obstruction

History of life-threatening allergic reaction or severe symptoms
See Allergic Reaction or Anaphylaxis Protocol, as appropriate

History of asthma/chronic lung disease
See Asthma/COPD Protocol

History of congenital or acquired heart disease
See Pulmonary Edema/Congestive Heart Failure Protocol

Transport to nearest appropriate medical facility

Consider ALS Rendezvous

(a) Inadequate RR: Infant less than 20 breaths per minute, Child less than 16 breaths per minute, Adolescent less than 12 breaths per minute. Inadequate effort: Poor chest rise, shallow respirations/poor air movement, cyanosis, severe retractions, paradoxical breathing.

(b) For children with chronic lung disease or congenital heart disease: Maintain or increase home oxygen to maintain patient’s target saturations.
7. UNIVERSAL ALGORITHM FOR PEDIATRIC RESPIRATORY DISTRESS FOR ALS

Assess Responsiveness

Not Responsive Assess ABCs

Responsive Assess Breathing

If respiratory with adequate rate and effort (b):
Oxygen 90–100% via non-rebreather mask

If respiratory with inadequate rate and effort: (a)
BVM with 100% oxygen at 12–20 breaths/min

Suspected Cause

Acute onset of upper airway symptoms: Stridor, head bobbing, drooling

History of life-threatening allergic reaction or severe symptoms
See Allergic Reaction or Anaphylaxis Protocol, as appropriate

History of asthma/chronic lung disease or acute onset of lower airway symptoms:
Wheezing, retractions, nasal flaring
See Asthma/COPD Protocol

History of congenital or acquired heart disease or acute onset of heart failure:
Wheezing/crackles, edema, poor perfusion
See Pulmonary Edema/ Congestive Heart Failure Protocol

Transport to nearest appropriate medical facility

(a) Inadequate RR: Infant less than 20 breaths per minute, Child less than 16 breaths per minute, Adolescent less than 12 breaths per minute. Inadequate effort: Poor chest rise, shallow respirations/poor air movement, cyanosis, severe retractions, paradoxical breathing.

(b) For children with chronic lung disease or congenital heart disease: Maintain or increase home oxygen to maintain patient’s target saturations.
SS. SEPSIS: ADULT

1. Inclusion Criteria
 a) Infection can cause a systemic response resulting in fever, altered mental status, shock including or excluding hypotension, and death. Early recognition and treatment with aggressive fluids, when not contraindicated, and early hospital notification may improve survival rates and patient outcomes.
 b) The following patient populations are considered especially high risk for sepsis and should have their temperature measured:
 (1) Altered mental status
 (2) Patients in long-term care facilities (nursing home)
 (3) Indwelling catheters
 (4) Oncology patients
 (5) Solid organ transplant
 (6) Bedridden
 (7) Post-operative
 (8) Currently on antibiotics
 (9) Asplenic
 (10) Left ventricular assist device
 c) For an adult patient, 18 years of age and older, to qualify for this protocol, they must have a suspected source of infection AND also present with at least two of the following criteria:
 (1) Temp greater than 100.4°F (38°C) or less than 95.9°F (35.5°C)
 (2) HR greater than 100 bpm
 (3) RR greater than 25 (or ETCO₂ less than or equal to 32 mmHg)
 (4) Hypotension (systolic BP less than 90 mmHg)
 (5) Point of care lactate reading greater than or equal to 4 mmol/L (if available)
 d) Patients with hypotension or altered mental status should be considered to have septic shock and treated and transported rapidly. Patients may be treated under this protocol if they do not meet the above criteria with medical consultation.

2. Treatment
 a) Place patient in position of comfort, or supine if hypotension is present.
 b) Carefully monitor airway and respiratory status, manage as required using the appropriate respiratory distress protocol (especially for patients with suspected pneumonia).
c) Initiate large bore IV. If large bore IV not available, consider a second peripheral IV with the intention of not causing delay in transport and reserve the use of IO for priority 1 patient. If transport time is greater than 20 minutes and IV access is unsuccessful, consider placement of an IO (especially for septic shock). Consider performing a blood draw if time permits. Accurately document start time of IV fluid initiation.

d) If lungs are clear, and patient does not have a history of CHF or end-stage renal failure, provide 2 L of LR wide open. Reassess every 500 mL for shortness of breath, blood pressure, and SpO₂ saturation changes. OR

e) If patient is fluid sensitive (i.e., has a history CHF, pulmonary edema, or end-stage renal disease) infuse 250 mL and carefully monitor and reassess. Repeat 250 mL once if no worsening of respiratory status is noted to a max of 500 mL (consultation may be obtained to provide more fluid).

f) If available, perform point of care lactate testing (Jurisdictional Pilot Program only).

FLUID LIMITS OR DOSES MAY BE MODIFIED WITH CONSULTATION.

g) Place patient on cardiac monitor and perform 12-lead (do not delay IV therapy or fluid bolus).

h) If hypotension persists after 2 L of LR are provided, consider additional LR up to a maximum of 30 mL/kg total.

i) For persistent hypotension after 30 mL/kg fluid bolus, administer epinephrine infusion. **(NEW '20)**

 1. Add 1 mg of epinephrine (either 1:1,000 or 1:10,000) in a 100 mL bag of LR or NS
 2. Use a Microdrip set (60 drops/mL) for infusion administration
 3. Adult epinephrine infusion dosage
 a) Administer infusion through a free-flowing IV, ideally 20 gauge or larger, or by IO
 b) Start infusion at 1 mL/min (60 drops/min) IV/IO
 c) Check blood pressure every 5 minutes. If MAP is less than 65 mmHg or systolic blood pressure is less than 90 mmHg, increase to a maximum rate of 2 mL/min (120 drops/min).
 d) If above blood pressure goals are not met upon reaching maximum rate, obtain online medical consultation
TT. SEPSIS: PEDIATRIC

1. Inclusion Criteria

a) Infection can cause a systemic response resulting in fever, altered mental status, shock including or excluding hypotension, and death. Early recognition and treatment with aggressive fluids, when not contraindicated, and early hospital notification may improve survival rates and patient outcomes.

b) The pediatric septic patient may be difficult to identify due to a poor history or clinicians may have difficulty identifying an obvious source of infection, as many pediatric sepsis patients are very young children or infants.

c) The following pediatric patients are at greater risk for sepsis and should have their temperature measured:

 (1) Altered mental status
 (2) Asplenia (spleen removed from treatment of trauma or illness)
 (3) Bone marrow or solid organ transplant
 (4) Cancer patients
 (5) Cerebral Palsy
 (6) Sickle Cell Disease
 (7) Central or indwelling catheters
 (8) Immunodeficiency or immunosuppression
 (9) Bedridden
 (10) Severe mental delay

d) For a pediatric patient, who has not reached their 18th birthday, to qualify for this protocol, they must have a known or suspected infection AND also present with at least three of the Pediatric Sepsis Rule-In Criteria by Age.

e) A patient not meeting three or more Pediatric Sepsis Rule-In Criteria by Age may be treated under this protocol with Pediatric Base Station approval if sepsis is suspected by the prehospital clinician.

ALERT ALtered mental status requires glucose check.

f) Patients who meet the sepsis rule-in criteria and have at least one of the High risk Sepsis Rule-In Criteria by Age (shaded) should receive aggressive standing order fluid therapy. Other patients meeting the pediatric sepsis rule-in criteria but not having one of the high risk signs may be treated only after contacting a Pediatric Base Station for medical consultation.

Pediatric Sepsis Rule-In Criteria by Age

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Less than 28 days</th>
<th>1-12 months</th>
<th>1 year but less than 2 years</th>
<th>2-4 years</th>
<th>5-12 years</th>
<th>13-17 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate (sustained)</td>
<td>greater than 205 bpm</td>
<td>greater than 205 bpm</td>
<td>greater than 190 bpm</td>
<td>greater than 140 bpm</td>
<td>greater than 140 bpm</td>
<td>greater than 100 bpm</td>
</tr>
<tr>
<td>Respiratory Rate</td>
<td>greater than 60 rpm</td>
<td>greater than 60 rpm</td>
<td>greater than 40 rpm</td>
<td>greater than 40 rpm</td>
<td>greater than 34 rpm</td>
<td>greater than 25 rpm</td>
</tr>
<tr>
<td>Temp</td>
<td>greater than 38.0°C or greater than 100.4°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap Refill/Skin</td>
<td>Delayed (greater than 3 seconds), mottled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>less than 60</td>
<td>less than 70</td>
<td>(less than 70+ (age x2))</td>
<td>(less than 70+ (age x2))</td>
<td>(less than 70+ (age x2))</td>
<td>less than 90</td>
</tr>
<tr>
<td>Mental Status</td>
<td>Unresponsive, confused, inappropriate, lethargic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk Condition</td>
<td>Cancer, Asplenia, Sickle Cell Disease, bone marrow or solid organ transplant, central or indwelling line/catheter, immunodeficiency or immunosuppression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meeting any of these criteria indicates standing order initiation of a fluid bolus.

IF A PEDIATRIC PATIENT MEETS THE ABOVE PEDIATRIC SEPSIS RULE-IN CRITERIA BY AGE, THIS PATIENT IS A PRIORITY 1 OR 2 PATIENT AND REQUIRES NOTIFICATION AS “SEPSIS ALERT” TO THE NEAREST APPROPRIATE FACILITY PRIOR TO ARRIVAL.

IF A PEDIATRIC PATIENT MEETS ANY OF THE SEPSIS RULE-IN PLUS ONE OR MORE OF THE SHADEd AREAS IN THE CHART, CONSULTATION WITH A DESIGNATED PEDIATRIC BASE STATION IS REQUIRED AND SHOULD BE COMBINED WITH LOCAL BASE STATION CONSULTATION.

2. **Treatment**

 a) Carefully monitor airway and respiratory status. Manage as required using the appropriate respiratory distress protocol (especially for patients with suspected pneumonia).

 b) Place patient on cardiac monitor.

 c) If patient meets the pediatric sepsis rule-in criteria and meets one of the high risk criteria (shaded), initiate IV/IO access and provide a 20 mL/kg bolus of LR IV/IO over 5–20 min. Maximum single dose of 2L. Accurately document start time of IV fluid initiation.
TT. SEPSIS: PEDIATRIC (Continued)

d) Monitor closely for signs of respiratory distress, rales or delayed capillary refill (greater than 2 seconds). If respiratory status deteriorates rapidly, stop bolus and obtain medical consultation.

e) For volume-sensitive children administer initial fluid bolus of 10 mL/kg LR IV/IO (max of 250 mL). (Volume-sensitive children are children who need smaller fluid bolus volumes due to special needs including neonates (birth to 28 days), congenital heart diseases, chronic lung disease, or chronic renal failure.)

f) **If patient’s vital signs do not improve after 20 mL/kg fluid,** consider additional 20 mL/kg LR boluses (up to a max of 60 mL/kg total, including first bolus, in one hour).

FLUID LIMITS OR DOSES MAY BE MODIFIED WITH CONSULTATION.

g) Pediatric epinephrine infusion dosage (NEW ’20):

(1) The following dosing chart should be used for pediatric patients less than 50 kg who do not achieve an age-appropriate BP (70 + 2 x Age) after 60 mL/kg fluid bolus (using approved epinephrine infusion and 60 drop set):

<table>
<thead>
<tr>
<th>Weight range (kg)</th>
<th>Initial epinephrine dose</th>
<th>If goal blood pressure not achieved at 5 min, increase to</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS than 10 kg</td>
<td>6 drops/min (0.1 mL/min)</td>
<td>12 drops/min (0.2 mL/min)</td>
</tr>
<tr>
<td>10-19 kg</td>
<td>12 drops/min (0.2 mL/min)</td>
<td>24 drops/min (0.4 mL/min)</td>
</tr>
<tr>
<td>20-29 kg</td>
<td>18 drops/min (0.3 mL/min)</td>
<td>36 drops/min (0.6 mL/min)</td>
</tr>
<tr>
<td>30-39 kg</td>
<td>24 drops/min (0.4 mL/min)</td>
<td>48 drops/min (0.8 mL/min)</td>
</tr>
<tr>
<td>40-49 kg</td>
<td>30 drops/min (0.5 mL/min)</td>
<td>60 drops/min (1.0 mL/min)</td>
</tr>
</tbody>
</table>

(2) Blood pressure goal:
 (a) For patients 10 years and older (including adults), systolic blood pressure greater than 90 mmHg;
 (b) For patients under 10 years of age, systolic blood pressure greater than 70 + 2x age in years mmHg; OR
 (c) Systolic blood pressure ordered by the pediatric base station.

(3) **If above blood pressure goal not met after 10 minutes, obtain online medical consultation.**
UU. SHOCK / HYPOPERFUSION (NEW ’20)

1. Inclusion Criteria
 The body responds in various ways to a state of inadequate blood flow to meet the oxygen demands of the cells. A patient may exhibit an altered mental status; cool, clammy skin; diaphoresis; dilated pupils; a rapid, weak pulse; shallow, labored respirations; general weakness; and/or a decreasing pulse pressure.

2. Treatment
 a) Refer to General Patient Care.
 b) Establish IV/IO access with LR.
 c) Initiate treatment based on suspected cause of shock.
 (1) Cardiogenic Shock
 (a) If rales are present, administer fluid bolus, titrate to a systolic blood pressure of 90 mmHg or greater. Maximum single of bolus of 250 mL of LR IV.
 (b) Additional fluid requires medical consultation.
 (c) Initiate epinephrine infusion
 (i) Add 1 mg of epinephrine (either 1:1,000 or 1:10,000) in a 100 mL bag of LR or NS
 (ii) Use a Microdrip set (60 drops/mL) for infusion administration
 (iii) Adult epinephrine infusion dosage:
 (1) Administer infusion through a free-flowing IV, ideally 20 gauge or larger, or by IO
 (2) Start infusion at 1 mL/min (60 drops/min) IV/IO
 (3) Check blood pressure every 5 minutes. If MAP is less than 65 mmHg or systolic blood pressure is less than 90 mmHg, increase to a maximum rate of 2 mL/min (120 drops/min).
 (4) If above blood pressure goals are not met upon reaching maximum rate, obtain online medical consultation.
 (2) Hemorrhagic Shock
 (a) Administer small boluses of LR (maximum single bolus of 250 mL prior to additional blood pressure check) to achieve and maintain a systolic blood pressure of 90 mmHg or greater (or mean arterial pressure of 65 mmHg). If head injury is suspected, administer small boluses of LR to maintain a systolic blood pressure of 110 mmHg or greater.
UU. SHOCK / HYPOPERFUSION (Continued)

(3) Hypovolemic or Septic Shock
 (a) If lungs are clear, administer fluid bolus of 20 mL/kg of LR IV. Titrate to a systolic blood pressure of 90 mmHg (or mean arterial pressure of 65 mmHg). Maximum patient dose of 2,000 mL of LR.
 (b) If hypotension persists after 2 L of LR are provided, consider additional LR up to a maximum of 30 mL/kg total.
 (c) Initiate epinephrine infusion if systolic blood pressure remains less than 90 mmHg (or mean arterial pressure less than 65 mmHg) after IV fluid bolus of 30 mL/kg LR.

(4) Anaphylactic shock: Initiate epinephrine infusion for patients who are in extremis with severe hypotension or impending respiratory failure, after having administered 3 doses of IM epinephrine. (Refer to Anaphylaxis Protocol.)

(5) Neurogenic shock (suspected spinal cord injury which typically presents with hypotension and bradycardia)
 (a) If lungs are clear, administer fluid bolus of 20 mL/kg of LR IV. Titrate to a systolic blood pressure of 110 mmHg (or mean arterial pressure of 85 mmHg). Maximum patient dose of 2,000 mL of LR.
 (b) Initiate epinephrine infusion if systolic blood pressure remains less than 110 mmHg (or mean arterial pressure less than 85 mmHg).

 d) The pediatric patient may present hemodynamically unstable or with hypoperfusion evidenced by hypotension and signs such as altered mental status, delayed capillary refill greater than 2 seconds, pallor, and/or peripheral cyanosis. Hypotension is defined as a systolic blood pressure less than 60 in neonates (patients birth to 28 days of age), less than 70 in infants (patients less than 1 year of age), less than [70 + (2 x years) = systolic BP] for patients greater than 1 year of age.
 e) Continue General Patient Care.

 f) Establish IV/IO access with LR.
 If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR IV/IO.
 OR
 For volume-sensitive children administer initial fluid bolus of 10 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 10 mL/kg LR IV/IO.
 Volume-sensitive children include: neonates (birth to 28 days), children with congenital heart disease, chronic lung disease, or chronic renal failure.
 g) Third and subsequent fluid boluses at 20 mL/kg IV/IO.
h) Pediatric epinephrine infusion dosage

(1) The following dosing chart should be used for pediatric patients less than 50 kg (using approved epinephrine infusion and 60 drop set):

<table>
<thead>
<tr>
<th>Weight range (kg)</th>
<th>Initial epinephrine dose</th>
<th>If goal blood pressure not achieved at 5 min, increase to</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS than 10 kg</td>
<td>6 drops/min (0.1 mL/min)</td>
<td>12 drops/min (0.2 mL/min)</td>
</tr>
<tr>
<td>10-19 kg</td>
<td>12 drops/min (0.2 mL/min)</td>
<td>24 drops/min (0.4 mL/min)</td>
</tr>
<tr>
<td>20-29 kg</td>
<td>18 drops/min (0.3 mL/min)</td>
<td>36 drops/min (0.6 mL/min)</td>
</tr>
<tr>
<td>30-39 kg</td>
<td>24 drops/min (0.4 mL/min)</td>
<td>48 drops/min (0.8 mL/min)</td>
</tr>
<tr>
<td>40-49 kg</td>
<td>30 drops/min (0.5 mL/min)</td>
<td>60 drops/min (1.0 mL/min)</td>
</tr>
</tbody>
</table>

(2) Blood pressure goal:
(a) For patients 10 years and older (including adults), systolic blood pressure greater than 90 mmHg;
(b) For patients under 10 years of age, systolic blood pressure greater than 70 + 2x age in years mmHg; OR
(c) Systolic blood pressure ordered by the pediatric base station.

(3) If above blood pressure goal not met after 10 minutes, obtain online medical consultation.
1. Inclusion Criteria

Patient may present with numbness or weakness (often on one side only), difficulty speaking, sudden onset of dizziness or loss of balance, blurred vision (including intermittent loss of vision in one or both eyes, which may have resolved upon arrival of EMS), or a severe, unexplained headache. May be accompanied by seizures or altered mental status.

The Cincinnati Prehospital Stroke Scale

(Kothari R, et al. Acad Emerg Med 1997; 4:9866-990.)

Facial Droop (have patient show teeth or smile):
- Normal – both sides of face move equally
- Abnormal – one side of face does not move as well as the other side

Arm Drift (patient closes eyes and holds both arms straight out for 10 seconds):
- Normal – both arms move the same or both arms do not move at all (other findings, such as strength of grip, may be helpful)
- Abnormal – one arm does not move or one arm drifts down compared with the other

Abnormal Speech (have the patient say “you can’t teach an old dog new tricks”):
- Normal – patient uses correct words with no slurring
- Abnormal – patient slurs words, uses the wrong words, or is unable to speak

Posterior Cerebellar Assessment

Balance and eyes: patient complains of sudden onset of loss of balance or dizziness, or has sudden vision loss (including intermittent loss of or blurred vision) indicates a stroke affecting the posterior cerebellar circulation.

If Posterior Cerebellar Assessment OR Cincinnati Prehospital Stroke Scale is positive, perform the Los Angeles Motor Scale (LAMS). Relay LAMS score to the receiving hospital during Stroke Alert notification.

The Los Angeles Motor Scale (LAMS)

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facial droop</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Present</td>
<td>1</td>
</tr>
<tr>
<td>Arm drift</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Drifts down</td>
<td>1</td>
</tr>
<tr>
<td>Falls rapidly</td>
<td>2</td>
</tr>
<tr>
<td>Grip strength</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td>Weak grip</td>
<td>1</td>
</tr>
<tr>
<td>No grip</td>
<td>2</td>
</tr>
</tbody>
</table>
V. STROKE: NEUROLOGICAL EMERGENCIES (Continued)

2. Treatment
 a) Position patient with head elevated at 30 degrees.
 b) If the patient has a positive Posterior Cerebellar Assessment OR Cincinnati Pre-
 hospital Stroke Scale AND can be delivered to the hospital **within 20 hours** of
 when patient was last known well, transport the patient to the closest Designated
 Acute Stroke Ready, Primary, or Comprehensive Stroke Center. If there is not
 one within 30 minutes, then go to the nearest hospital.

 IF PATIENT MEETS ABOVE STROKE CRITERIA, THIS PATIENT IS A PRIORITY 1 PATIENT AND
 REQUIRES NOTIFICATION OF THE NEAREST DESIGNATED ACUTE STROKE READY, PRIMARY,
 OR COMPREHENSIVE STROKE CENTER AS SOON AS POSSIBLE TO ALLOW HOSPITAL
 PREPARATION. DURING THE CONSULTATION WITH THE RECEIVING FACILITY, THE CLINICIAN
 SHALL USE THE VERBIAGE, “STROKE ALERT WITH A LAST KNOWN WELL TIME OF XX:XX”
 AS THE UNIVERSAL METHOD OF NOTIFYING THE FACILITY THAT THE PATIENT MEETS THE
 STROKE INCLUSION CRITERIA.

 CLINICIANS SHOULD OBTAIN AND DOCUMENT A CONTACT TELEPHONE NUMBER FOR ONE
 OR MORE INDIVIDUALS WHO HAVE DETAILS ABOUT THE PATIENT’S MEDICAL HISTORY SO
 THAT THE PHYSICIAN MAY OBTAIN AND VALIDATE ADDITIONAL PATIENT INFORMATION

 WHILE STROKES DURING PREGNANCY OR SHORTLY AFTER GIVING BIRTH ARE RARE, THERE
 HAS BEEN A SIGNIFICANT RISE REPORTED IN THE LITERATURE. MOTHERS-TO-BE AND
 POSTPARTUM MOTHERS HAVE AN INCREASED RISK.

 c) Use glucometer and treat if glucose less than 70 mg/dl.
 d) Establish IV access with LR.
 e) If the patient is hypotensive, obtain medical consultation.
 f) Consider obtaining blood sample using closed system.
 g) Do not treat hypertension in the field.

 THE CAUSES OF STROKES IN CHILDREN ARE DIFFERENT FROM ADULTS. WHILE STROKES
 ARE UNCOMMON IN CHILDREN, THEY DO OCCUR AND ARE MOST OFTEN CAUSED BY ONE
 OF THE FOLLOWING CONDITIONS: CONGENITAL HEART DEFECTS, INFECTIONS (INCLUDING
 CHICKEN POX, MENINGITIS, OR ENCEPHALITIS), BRAIN INJURY, OR BLOOD DISORDERS
 (SUCH AS SICKLE CELL DISEASE). STROKES IN CHILDREN ARE MOST OFTEN SEEN IN
 INFANTS BUT DO OCCUR IN CHILDREN OF ANY AGE.

 CHILDREN WITH STROKE SYMPTOMS WHO HAVE NOT REACHED THEIR 18TH BIRTHDAY
 SHALL BE TREATED UNDER THE PEDIATRIC PROTOCOL. CONSULT WITH A LOCAL BASE
 STATION AND A PEDIATRIC BASE STATION TO ARRANGE TRANSPORT TO A MARYLAND
 PEDIATRIC TRAUMA CENTER.
h) Administer oxygen at 2–6 liters via nasal cannula (unless hypoxic or in respiratory distress).

i) Position patient with head elevated at 30 degrees.

j) If a child presents with a SUSPECTED stroke (e.g., sickle cell patient), consult with the nearest Pediatric Base Station and local Base Station. Clinicians should obtain and document a contact telephone number for one or more individuals who have details about the patient’s medical history so that the physician may obtain and validate additional patient information.

k) Use glucometer and treat accordingly. (See Section IV, Glucometer Protocol.)

l) Establish IV access with LR.

m) If the patient is hypotensive, obtain medical consultation.

n) Consider obtaining blood sample using closed system.

o) Do not treat hypertension in the field.
EMS STROKE ALGORITHM

Support ABCs and provide any needed BLS/ALS interventions
Check Glucose

Determine presence of stroke severity using Posterior Cerebellar assessment and Cincinnati Prehospital Stroke Scale

Either test positive for stroke assessment?

NO

Treat and transport per pt presentation

Determine time patient last known well
LAMS Assessment

Signs and symptoms consistent with stroke AND onset less than 20 hrs.

NO

Transport to the closest Stroke Center (a)

Transport to closest Stroke Center (a) as Priority 1 and Stroke Alert

(a) Designated Acute Stroke Ready, Primary, or Comprehensive Stroke Center
VV2. SYNCOPE

1. Inclusion Criteria
 A patient of greater than 24 months of age who has had a loss of consciousness associated with an inability to maintain postural tone. The episode may spontaneously and completely resolve without medical intervention. **For children less than 24 months of age, refer to ALTE Protocol.**

2. Treatment
 a) Place patient in position of comfort.
 b) Perform Cincinnati Stroke Scale. If any segment is positive, go to Stroke: Neurological Emergencies Protocol.
 c) Place patient on cardiac monitor.
 d) Obtain 12-lead EKG.
 e) Establish IV access.
 f) Use glucometer and treat accordingly.
 g) Administer 20mL/kg bolus of LR to treat systolic blood pressure persistently less than 90 mmHg.
 h) Place patient in position of comfort.
 i) Place patient on cardiac monitor.
 j) Obtain 12-lead EKG for patients 13 years of age and older, or have not returned to baseline, or high-risk factors as listed in the ALERT.
 k) Establish IV access, if appropriate.
 l) Use glucometer and treat appropriately.
 m) Administer 20mL/kg bolus of LR to treat age-defined hypotension.

SYNCOPE IN CHILDREN CAN SOMETIMES BE ASSOCIATED WITH SERIOUS MEDICAL CONDITIONS. PATIENTS WITH HISTORY OR EVIDENCE OF HEART FAILURE, STRUCTURAL CARDIAC ANOMALY, AND/OR ABNORMAL FINDING ON EKG ARE AT HIGHER RISK FOR ADVERSE OUTCOMES.
1. Inclusion Criteria
 a) The primary objectives in burn care by EMS clinicians are to stop the burning process, establish IV access, avoid hypothermia, and transport patients quickly and safely to a burn center. While patients with large burns (greater than 20%), facial burns, and/or significant smoke inhalation often require endotracheal intubation and mechanical ventilation during their resuscitation and care, airway compromise in the first few hours following a burn is uncommon.
 (1) In adults, prehospital tracheal intubation following acute burns is generally unnecessary unless signs of respiratory failure are present (symptomatic airway obstruction, shock, altered mental status, hypoxemia while receiving supplemental oxygen, or dyspnea, etc.).
 (2) Pediatric airways are smaller than adult airways and require frequent and thorough assessment for signs of respiratory distress. Intubate if necessary.
 b) Burns are the body’s response to injuries to the skin, muscles, bone, nerves, and blood vessels caused by thermal, chemical, electrical, radiation, or light source. Patients may exhibit any of the following: reddening of the skin, deep and intense pain, blisters, mottled appearance, and/or charred black or brown areas with severe or no pain.
 c) Indications for Referral to a Burn Center
 (1) All third degree burns (full thickness)
 (2) Second degree burns (partial thickness) greater than 10% total body surface area
 (3) Burns of the face, hands, feet, major joints, genitalia, or perineum
 (4) Electrical burns, including lightning or contact with high voltage (greater than 120 volts)
 (5) Suspected inhalation injury of toxic smoke (Monitor the patients with suspected inhalation injury for delayed airway obstruction, respiratory distress, or oxygen desaturation as the patient may need emergent airway management.)
 (6) Circumferential burns involving the extremities or torso
 (7) Chemical burns should be transported to the closest appropriate hospital for decontamination prior to referral to a burn center

 PATIENTS WITH BURNS AND TRAUMA SHOULD BE REFERRED TO THE NEAREST APPROPRIATE TRAUMA CENTER FOR INITIAL CARE.

 CHILDREN WHO MEET BURN INCLUSIVE CRITERIA WHO HAVE NOT REACHED THEIR 15TH BIRTHDAY SHOULD BE TRANSPORTED TO A PEDIATRIC BURN CENTER.

 IF PATIENT HAS EXPOSURE TO CARBON MONOXIDE/SMOKE INHALATION, REFER TO CARBON MONOXIDE/SMOKE INHALATION PROTOCOL.

2. Treatment
 a) Extract the patient from burning vehicles or buildings if safe to do so and move patient to a place of relative safety.
b) Do what is necessary to stop the burning process. If water is used to extinguish the fire, remove wet clothing and dry the patient to prevent hypothermia.

c) Administer oxygen in as high a concentration of oxygen as possible (*note: pulse oximetry is not reliable in the presence of carbon monoxide or cyanide exposure*).

d) Determine percent of body surface area (BSA) burned and depth.

e) Treat associated trauma.

f) For burns greater than 10%, follow Hypothermia Protocol as well.

g) Remove all rings, bracelets, and other jewelry.

h) Cover wounds appropriately (with a clean sheet or Mylar blanket—sterile dressings no longer recommended).

i) For chemical burns, brush off dry chemical, remove clothing, flush with water.

DO NOT GIVE ANYTHING BY MOUTH.

DO NOT PLACE ICE OR ICE PACKS ON ANY PATIENT WITH BURNS GREATER THAN 5% TOTAL BODY SURFACE AREA.

CONSIDER UTILIZING AEROMEDICAL RESOURCE IF PATIENT IS MORE THAN 30 MINUTES FROM A BURN CENTER/HYPERBARIC MEDICINE SPECIALTY CENTER BY GROUND.

j) Establish IV access with LR, if appropriate.

(1) For shock patients, administer a fluid bolus of 20 mL/kg LR followed by a second 20 mL/kg LR if needed. Titrate to a systolic pressure of 90 mmHg.

l) Consider additional fluid administration. Maximum dose 2,000 mL without medical consultation.

m) Establish IV access with LR, if appropriate.

(1) If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR IV/IO.

n) Third and subsequent fluid boluses at 20 mL/kg LR IV/IO.

RULE OF NINES

Note: The surface of the patient’s palm equals 1% of their body surface area.
XX. TRAUMA PROTOCOL: EYE TRAUMA

1. Inclusion Criteria

The patient may present with profuse bleeding, avulsions, lacerations, foreign objects, impaled objects, and/or soft tissue damage to the eye(s) and/or surrounding facial areas.

2. Treatment

NEVER APPLY PRESSURE TO THE EYEBALL OR GLOBE!

IF THE PATIENT HAS OTHER ASSOCIATED TRAUMA OR BURNS, TRANSPORT THE PATIENT TO THE APPROPRIATE TRAUMA OR BURN CENTER; OTHERWISE, TRANSPORT THE PATIENT TO THE NEAREST EYE TRAUMA CENTER, IF APPROPRIATE.

DO NOT USE CHEMICAL COLD PACKS ON THE FACE.

a) **Foreign objects NOT embedded in the eye(s):** Flush with copious amounts of water (preferably sterile), normal saline, or LR from the bridge of the nose outward.

b) **Injury to orbits (area around the eye):** Consider head stabilization and Spinal Protection Protocol.

c) **Lacerations/injuries to the eyeball or globe:** Shield affected eyeball and dress other eye to reduce movement and protect loss of fluids; consider head stabilization and spinal protection and elevate the head to decrease intraocular pressure.

d) **Impaled objects:** Stabilize object, shield affected eyeball, and dress other eye to reduce movement.

e) Establish IV access with LR, if appropriate.

XX. TRAUMA PROTOCOL: EYE TRAUMA (Continued)

- g) **Foreign objects NOT embedded in the eye(s):** Flush with copious amounts of water (preferably sterile), normal saline, or LR from the bridge of the nose outward.

- h) **Injury to orbits (area around the eye):** Consider head stabilization and Spinal Protection Protocol.

- i) **Lacerations/injuries to the eyeball or globe:** Shield affected eyeball and dress other eye to reduce movement and protect loss of fluids; consider head stabilization and spinal protection and elevate the head to decrease intraocular pressure.

- j) **Impaled objects:** Stabilize object, shield affected eyeball, and dress other eye to reduce movement.

- k) Establish IV/IO access with LR, if appropriate.

1. Inclusion Criteria
 a) **UPPER EXTREMITY**: Patients with any of the following injuries to the hand or upper extremity should be referred to Curtis National Hand Center at Union Memorial Hospital. Pediatric patients who have not yet reached their 15th birthday should be referred to a pediatric trauma center.
 (1) Complete or incomplete hand or finger amputation (except distal fingertip)
 (2) Degloving, high pressure injection, or crush injury
 (3) Compartment syndrome, suspected (excessive swelling and significant pain to extremity)
 (4) Complicated nerve or vascular injury of the forearm and hand
 (5) Stable patients with an isolated upper extremity injury at or below the mid-humerus
 (6) High-pressure injection injuries to hand or upper extremity
 (7) Complicated nerve, vessel, or compartment syndrome (excessive swelling and pain of extremity with possible evolving nerve deficit) injury of the forearm and hand
 b) **LOWER EXTREMITY**: Patients with any of the following injuries to the lower extremity should be referred to an adult trauma center. Pediatric patients who have not yet reached their 15th birthday should be referred to a pediatric trauma center.
 (1) Complete or incomplete amputation of the lower extremity, ankle, foot
 (2) Degloving, high pressure injection, or crush injury
 (3) Compartment syndrome, suspected (excessive swelling and significant pain to extremity)
 (4) Complicated nerve or vascular injury of the lower extremity

2. Exclusion Criteria
 a) **UPPER EXTREMITY** (Hand Center)
 (1) Patients with unstable or abnormal vital signs (transport to trauma center)
 (2) Patients with major and/or multiple system trauma (transport to trauma center)
 b) **LOWER EXTREMITY** (Adult/Pediatric Trauma Center)
 (1) Patients with toe amputation (transport to local hospital)

LIFE BEFORE LIMB.

TOE INJURIES FROM LAWN MOWER ARE NOT CANDIDATES FOR REIMPLANTATION AND PATIENTS SHOULD GO TO CLOSEST MEDICAL FACILITY.
3. **Treatment**

 a) **Control bleeding**

 (1) Apply direct pressure to the area of bleeding

 (2) Apply tourniquet early if hypovolemic shock is present and/or bleeding is difficult to control. If bleeding source unclear, place tourniquet as proximal as possible on the limb.

 (3) If bleeding from a non-compressible injury (i.e., not able to place a tourniquet to stop bleeding), consider wound packing and/or hemostatic gauze.

 b) **Splint suspected fracture or dislocated extremity or joint.** If suspected fracture appears to have compromised perfusion or neurological function, apply gentle traction and splint in anatomic position

 c) **Package amputated extremity in sealed plastic bag (keep dry) and place on top of ice to keep cool.** **DO NOT FREEZE. DO NOT SUBMERGE IN WATER OR FREEZE AMPUTATED PART.**

 USE TIME, DISTANCE, WEATHER, AND PROXIMITY TO DESIGNATED TRAUMA CENTER TO DETERMINE MODE OF TRANSPORT. IF ESTIMATED TRANSPORT TIME TO DESIGNATED HAND CENTER IS LESS THAN 30 MINUTES, USE GROUND TRANSPORT.

 d) **Establish IV access with LR, if appropriate.**

 If patient develops hypotension or signs of hemorrhagic shock:

 (1) Reassess the patient for other injuries. If multiple system trauma or neurotrauma, transport to a trauma center.

 (2) Administer small boluses of Lactated Ringer’s to achieve and maintain a systolic blood pressure of greater than or equal to 90 mmHg (greater than or equal to 110 mmHg if injuries include a suspected head injury). Maximum single bolus of 250 mL prior to additional blood pressure check

 e) **Maximum dose 2,000 mL without medical consultation**

 f) **Provide pain management per Pain Management Protocol**

 g) **Provide treatment as above in adult BLS section.**

 h) **Establish IV/IO access with LR, if appropriate.**

 If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR IV/IO.

 i) **Third and subsequent fluid boluses at 20 mL/kg LR IV/IO.**

 j) **Provide pain management per Pain Management Protocol.**
ZZ. TRAUMA PROTOCOL: MULTIPLE/SEVERE TRAUMA (NEW ’20)

1. Inclusion Criteria
 a) A patient who sustains multiple or severe traumatic injuries. Patients may present with suspected hypovolemic or neurogenic shock, hypotension, hypertension, rapid or slow heart rate, unequal pupils, shallow or absent respirations, decreased distal pulses, decreased motor or sensory function in the extremities, suspected internal bleeding, external bleeding, fractures, or lacerations.
 b) A patient who meets criteria for any category of the Maryland Trauma Decision Tree (Category Alpha, Bravo, Charlie, or Delta).

 WHILE TIME, DISTANCE, AND PROXIMITY ARE ALL FACTORS TO BE CONSIDERED IN THE TRIAGE DECISION, THE TRAUMA DECISION TREE SHOULD BE USED TO DETERMINE WHO SHOULD BE TRANSPORTED TO THE NEAREST APPROPRIATE TRAUMA CENTER AND WHEN THE TRANSPORT SHOULD OCCUR.

 PEDIATRIC PATIENTS WHO MEET INCLUSION BASED ON THE TRAUMA DECISION TREE AND WHO HAVE NOT REACHED THEIR 15TH BIRTHDAY SHOULD BE TRANSPORTED TO A PEDIATRIC TRAUMA CENTER.

2. Treatment
 a) Airway with Cervical Spine Motion Restriction
 (1) Apply Spinal Motion Restriction Protocol for blunt trauma patients. Patients with isolated penetrating trauma should not have spinal immobilization performed.
 (2) Consider early NPA/OPA placement to establish or maintain a patient airway.
 b) Breathing and Ventilation
 (1) Provide ventilatory support and oxygen via appropriate method for the patient
 (2) Maintain pulse oximetry (SpO2) greater than or equal to 94%
 (3) Hyperventilate the head-injured patient as follows:
 (a) Adult/Adolescent (greater than 13 years of age): 20 breaths per minute
 (i) Who has signs of herniation such as unequal pupils, posturing or paralysis, or
 (ii) Who is manifesting a rapidly decreasing GCS or
 (iii) With on-line medical consultation
 (4) Seal open chest wounds with a vented chest seal
 c) Circulation with Hemorrhage Control
 (1) Apply direct pressure to the area of bleeding
 (2) If bleeding is life-threatening at any time OR continues despite direct pressure, then attempt wound packing, hemostatic bandages, and/or early tourniquet as appropriate
 (3) Apply pelvic stabilization if indicated (use pelvic binder if available)
d) Breathing and Ventilation
 (1) Maintain ETCO₂ between 35-40 mmHg for any patient with significant head injury
 (2) For patients with suspected head injury AND signs of increased intracranial pressure (brainstem herniation), consider adjusting ventilations to achieve an ETCO₂ 30-35 mmHg.
 (3) If suspected tension pneumothorax, perform needle decompression thoracostomy; once catheters are placed, do not remove

e) Circulation with Hemorrhage Control
 (1) For patients with a systolic blood pressure greater than or equal to 90 mmHg (greater than or equal to 110 mmHg if injuries include a suspected head injury):
 (a) Establish IV/IO access with a saline lock
 (2) For patients with a systolic blood pressure less than 90 mmHg (less than 110 mmHg if injuries include a suspected head injury):
 (a) Establish IV/IO access
 (b) Administer small boluses of Lactated Ringer’s (maximum single bolus of 250 mL prior to additional blood pressure check) to achieve and maintain a systolic blood pressure of greater than or equal to 90 mmHg (110 mmHg if injuries include a suspected head injury)
 (c) Maximum dose 2,000 mL without medical consultation

f) Consider second IV for category alpha and bravo patients ONLY if it does NOT delay transport

g) Consider pain management per Pain Management Protocol

h) Airway with Cervical Spine Motion Restriction
 (1) Apply Spinal Motion Restriction Protocol for blunt trauma patients. Patients with isolated penetrating trauma should not have spinal immobilization performed.
 (2) Consider early NPA/OPA placement to establish or maintain a patient airway

i) Breathing and Ventilation
 (1) Provide ventilatory support and oxygen via appropriate method for the patient
 (2) Maintain pulse oximetry (SpO₂) greater than or equal to 94%
 (3) Hyperventilate the head-injured patient as follows:
 (a) Adult/Adolescent (greater than 13 years of age): 20 breaths per minute
 (b) Child (1-12 years of age): 30 breaths per minute
ZZ. TRAUMA PROTOCOL: MULTIPLE/SEVERE TRAUMA (Continued)

(c) Infant (less than 1 year of age): 35 breaths per minute
 (i) Who has signs of herniation such as unequal pupils, posturing, or paralysis, or
 (ii) Who is manifesting a rapidly decreasing GCS or
 (iii) With on-line medical consultation

(4) Seal open chest wounds with a vented chest seal

j) Circulation with Hemorrhage Control
 (1) Apply direct pressure to the area of bleeding
 (2) If bleeding is life-threatening at any time OR continues despite direct pressure, then attempt wound packing, hemostatic bandages, and/or early tourniquet as appropriate
 (3) Apply pelvic stabilization technique if indicated

PELVIC FRACTURES IN PEDIATRIC PATIENTS ARE VERY RARE; PELVIC BINDERS/SPLINTS SHOULD BE APPLIED WITH CAUTION.

k) Breathing and Ventilation
 (1) If suspected tension pneumothorax, perform needle decompression thoracostomy; once catheters are placed, do not remove.

l) Circulation with Hemorrhage Control
 (1) Establish IV/IO access with LR.
 (2) If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR.
 (3) Third and subsequent fluid boluses at 20 mL/kg LR IV/IO.

m) Consider pain management per Pain Management Protocol
GLASGOW COMA SCALE

Eye Opening

<table>
<thead>
<tr>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneously</td>
<td>4</td>
</tr>
<tr>
<td>To Voice</td>
<td>3</td>
</tr>
<tr>
<td>To Pain</td>
<td>2</td>
</tr>
<tr>
<td>No Response</td>
<td>1</td>
</tr>
</tbody>
</table>

Motor Response

<table>
<thead>
<tr>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>To Verbal Command - Obeys</td>
<td>6</td>
</tr>
<tr>
<td>To Painful Stimulus - Localizes Pain</td>
<td>5</td>
</tr>
<tr>
<td>Flexion - Withdraw</td>
<td>4</td>
</tr>
<tr>
<td>Flexion - Abnormal</td>
<td>3</td>
</tr>
<tr>
<td>Extension</td>
<td>2</td>
</tr>
<tr>
<td>No Response</td>
<td>1</td>
</tr>
</tbody>
</table>

Verbal Response

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2 years old</td>
<td></td>
</tr>
<tr>
<td>5 SMILES/COOS/CRIES</td>
<td>5</td>
</tr>
<tr>
<td>4 CRIES</td>
<td>4</td>
</tr>
<tr>
<td>3 INAPPROPRIATE CRIES/SCREAMS</td>
<td>3</td>
</tr>
<tr>
<td>2 GRUNTS</td>
<td>2</td>
</tr>
<tr>
<td>1 NO RESPONSE</td>
<td>1</td>
</tr>
<tr>
<td>2–5 years old</td>
<td></td>
</tr>
<tr>
<td>APPROPRIATE WORDS</td>
<td>5</td>
</tr>
<tr>
<td>INAPPROPRIATE WORDS</td>
<td>4</td>
</tr>
<tr>
<td>CRIES/SCREAMS</td>
<td>3</td>
</tr>
<tr>
<td>GRUNTS</td>
<td>2</td>
</tr>
<tr>
<td>NO RESPONSE</td>
<td>1</td>
</tr>
<tr>
<td>Greater than 5 years old</td>
<td></td>
</tr>
<tr>
<td>ORIENTED AND CONVERSES</td>
<td>5</td>
</tr>
<tr>
<td>DISORIENTED AND CONVERSES</td>
<td>4</td>
</tr>
<tr>
<td>INAPPROPRIATE WORDS</td>
<td>3</td>
</tr>
<tr>
<td>INCOMPREHENSIBLE SOUNDS</td>
<td>2</td>
</tr>
<tr>
<td>NO RESPONSE</td>
<td>1</td>
</tr>
</tbody>
</table>

Glasgow Coma Score

<table>
<thead>
<tr>
<th>Total</th>
<th>(3–15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AAA. TRAUMA PROTOCOL: SEXUAL ASSAULT

1. Inclusion Criteria
 Patient may present with no overt evidence of trauma, or may present with the following injuries:
 a) Abrasions, contusions, and/or bleeding
 b) Signs of forcible restraint
 c) Petechiae of the face and conjunctiva, secondary to strangulation
 d) Facial injuries, including eye injuries, broken teeth, swollen jaw, or cheekbone
 e) Vaginal or rectal bleeding or pain

 PATIENTS MEETING THE SPECIALTY CENTER CRITERIA OR IN NEED OF TIME-SENSITIVE EMERGENT CARE SHOULD BE PREFERENTIALLY TRANSPORTED TO THE SPECIALTY CENTER OR NEAREST EMERGENCY DEPARTMENT FOR MANAGEMENT, EVEN IF THIS IS NOT A MARYLAND COALITION AGAINST SEXUAL ASSAULT (MCASA) RECOGNIZED FACILITY. MCASA RECOGNITION SHOULD NOT SUPERCEDE SPECIALTY CENTER NEEDS.

 ALL HEALTH CARE CLINICIANS ARE OBLIGATED BY LAW TO REPORT CASES OF SUSPECTED CHILD OR VULNERABLE ADULT ABUSE AND/OR NEGLECT TO EITHER THE LOCAL POLICE OR ADULT/CHILD PROTECTIVE SERVICE AGENCIES. DO NOT INITIATE REPORT IN FRONT OF THE PATIENT, PARENT, OR CAREGIVER (MD CODE, FAMILY LAW, § 5-704). UNDER MARYLAND LAW, EMS CLINICIANS ARE PROTECTED FROM LIABILITY IF THEY MAKE A REPORT OF CHILD/VULNERABLE ADULT ABUSE AND NEGLECT IN GOOD FAITH (COURTS AND JUDICIAL PROCEEDINGS ARTICLE § 5-620).

2. Treatment
 a) If practical, allow patient to speak with a clinician with whom they are most comfortable.
 b) Maintain non-judgmental, caring attitude.
 c) Preserve the crime scene and clothing articles, if practical.
 d) Do not perform an examination of the genitals or rectum unless necessary to stabilize the patient.
 e) Dress wounds (do not attempt to clean).
 f) Discourage any self-treatment (shower, washing, changing clothes, brushing teeth).
 g) Treat injuries according to presentation.

 IF POSSIBLE, TRANSPORT THE PATIENT TO THE APPROPRIATE MARYLAND COALITION AGAINST SEXUAL ASSAULT (MCASA) RECOGNIZED FACILITY FOR THE SEXUAL ASSAULT FORENSIC EXAM (S.A.F.E.). CLINICIANS SHOULD USE THE TERM “SAFE PATIENT” WHEN NOTIFYING THE RECEIVING FACILITY OF THE TRANSPORT.

 h) Patients under 13 years of age should be transported to an MCASA-recognized pediatric facility for the Sexual Assault Forensic Exam.
BBB. TRAUMA PROTOCOL: SPINAL MOTION RESTRICTION

1. Inclusion Criteria
 a) “Spinal Motion Restriction” refers to the act of protecting the spinal cord from further injury.
 b) “Spinal immobilization” is the act of placing a patient on a backboard with cervical collar for the purpose of trying to prevent excessive movement of the spinal column.
 c) Indications for initiating spinal motion restriction:
 (1) Patients who have a blunt trauma with a high-energy mechanism of injury that has potential to cause spinal cord injury or vertebral instability AND one or more of the following should receive spinal motion restriction:
 (a) Midline cervical, thoracic, or lumbar spinal pain, tenderness, or deformity
 (b) Signs and symptoms of new paraplegia or quadriplegia
 (c) Focal neurological deficit (sensory or motor)
 (d) Altered mental status or disorientation
 (e) Distracting injury: Any injury (e.g., fracture, chest, or abdominal trauma) associated with significant discomfort that could potentially distract from a patient’s ability to accurately discern or define spinal column pain or tenderness.
 (2) Indications for referral to an Adult Specialty Spinal Center.
 (a) 15 years of age or older AND
 (b) Signs and symptoms of new paraplegia or quadriplegia in the presence of trauma AND
 (c) Patent airway AND
 (d) Hemodynamically stable
 If considering referral to Adult Specialty Spinal Center, consult with both the nearest Trauma Center and the Adult Spinal Specialty Center, when possible.

2. Treatment
 a) All patients meeting the Spinal Motion Restriction Protocol shall have manual in-line cervical spine stabilization and application of a correctly sized cervical collar.
 b) Minimize flexion, extension, and rotation of the spinal column.
 c) Patients meeting the Spinal Motion Restriction Protocol who are with neurological deficit, or not able to ambulate on their own accord, shall be immobilized with cervical collar and a backboard.
 d) The following patients only need application of a cervical collar and do not need to be placed in full immobilization with a backboard:
 (1) Patients who are found by EMS clinicians to be standing or ambulatory,
 (2) Patients who have a GCS of 15 and are able to safely extricate themselves from the environment (e.g., vehicle seat) without gross movement (flexion, extension, or rotation) of the spinal column, and
 (3) Patients who do not have evidence of a neurological deficit.
e) Patients who are placed in a cervical collar without a need for immobilization on a backboard should be assisted in minimal movement to the EMS stretcher and allowed to lie down supine on their own accord.

f) Patients meeting Spinal Motion Restriction Protocol and not requiring immobilization with a backboard should be secured to the EMS stretcher in a supine position with the head elevated at 30 degrees.

g) Backboards may be used for patient extrication and patient transfer for patients not meeting Spinal Motion Restriction Protocol; however, other devices are preferred (e.g., sheet, Reeves sleeve, or scoop stretcher).

h) If the backboard is used for extrication from the scene to an ambulance, the patient should be removed from the backboard as soon as possible. The stretcher mattress will provide support in place of the backboard.

i) Interfacility transport patients who have already been removed from a backboard should not be placed back on the backboard prior to transport.

j) Helmet Removal
 (1) If patient is wearing a helmet, the goals are assessment and management of the airway, breathing, and circulation followed by protection of the spinal column by maintaining neutral alignment of the spinal column.
 (2) If patient is wearing helmet and no shoulder pads, removal of the helmet is indicated.
 (3) If patient is wearing helmet with shoulder pads, removal of the helmet is acceptable only with concurrent removal of shoulder pads. Under these conditions, removal of the helmet is indicated for management of the airway or other facial trauma.

k) Patients found with backboard applied before EMS arrival
 (1) If EMS clinicians find patient immobilized on a backboard applied prior to arrival, the principles of the Spinal Motion Restriction Protocol still apply.

l) If the patient presents with hypotension and concern for neurogenic shock, refer to the neurogenic shock section of the Shock/Hypotension protocol.

In children who have not reached their 15th birthday:
Indications for initiating spinal motion restriction:

m) Patients who have a blunt trauma with a high-energy mechanism of injury that has potential to cause spinal cord injury or vertebral instability and the presence of or inability to assess one or more of the following should receive spinal motion restriction.
(1) Midline spinal pain, tenderness, or deformity
(2) Signs and symptoms of new paraplegia or quadriplegia
(3) Focal neurological deficit
(4) Altered mental status or disorientation
(5) Distracting injury
(6) Neck pain or torticollis
(7) High-impact diving incident or high-risk motor vehicle crash (i.e., head-on collision, rollover, ejected from the vehicle, death in the same crash, or speed greater than 55 mph)
(8) Substantial torso injury
(9) Conditions predisposing to spine injury

Indications for referral to a Pediatric Trauma Center:
(10) Patient is less than 15 years of age AND
(11) Signs and symptoms of new paraplegia or quadriplegia in the presence of trauma AND
(12) Patent airway AND
(13) Hemodynamically stable

Consult with nearest Trauma Center and, when possible, the nearest Pediatric Trauma Center.

n) Initiate General Patient Care.

o) All patients meeting the Spinal Motion Restriction Protocol shall have manual in-line cervical spine stabilization and application of a correctly sized cervical collar.

p) Minimize flexion, extension, and rotation of the spinal column.

q) Patients meeting the Spinal Motion Restriction Protocol who are with neurological deficit, not able to ambulate on their own accord, or who are unable to respond during assessment shall be immobilized with cervical collar and a backboard.

r) The following patients only need application of a cervical collar and do not need to be placed in full immobilization with a backboard:
(1) Patients who are found by EMS clinicians to be standing or ambulatory
(2) Patients who have a GCS of 15 and are able to safely extricate themselves from the environment (e.g., vehicle seat) without gross movement (flexion, extension, or rotation) of the spinal column, and
(3) Patients who do not have evidence of a neurological deficit.

s) Patients who are placed in a cervical collar without a need for immobilization on a backboard should be assisted in minimal movement to the EMS stretcher and allowed to lie down supine on their own accord.
t) Patients meeting Spinal Motion Restriction Protocol and not requiring immobilization with a backboard should be secured to the EMS stretcher in a supine position with the head elevated at 30 degrees.

u) Backboards may be used for patient extrication and patient transfer for patients not meeting Spinal Motion Restriction Protocol; however, other devices are preferred (e.g., sheet, Reeves sleeve, or scoop stretcher).

v) If the backboard is used for extrication from the scene to an ambulance, the patient should be removed from the backboard as soon as possible. The stretcher mattress will provide support in place of the backboard.

w) Interfacility transport patients who have already been removed from a backboard should not be placed back on the backboard prior to transport.

bb) Helmet Removal
(1) If patient is wearing a helmet, the goals are assessment and management of the airway, breathing, and circulation followed by protection of the spinal column by maintaining neutral alignment of the spinal column.
(2) If patient is wearing helmet and no shoulder pads, removal of the helmet is indicated.
(3) If patient is wearing helmet with shoulder pads, removal of the helmet is acceptable only with concurrent removal of shoulder pads. Under these conditions, removal of the helmet is indicated for management of the airway or other facial trauma.

cc) Patients found with backboard applied before EMS arrival
(2) If EMS clinicians find patient immobilized on a backboard applied prior to arrival, the principles of the Spinal Motion Restriction Protocol still apply.

dd) If the patient presents with hypotension and concern for neurogenic shock, obtain medical consultation and refer to pediatric section of Shock/Hypoperfusion protocol.
BBB. TRAUMA PROTOCOL: SPINAL MOTION RESTRICTION (Continued)

SPINAL MOTION RESTRICTION ALGORITHM

High-risk mechanism of blunt trauma AND one or more of the following will receive a minimum of a cervical collar

All patients

- Midline cervical, thoracic or lumbar spinal pain, tenderness, or deformity
- New paraplegia or quadriplegia
- Focal neurological deficit (sensory or motor)
- Altered mental status or disorientation or intoxication
- Distracting injury: Any injury (e.g., fracture, chest or abdominal trauma) associated with significant discomfort that could potentially distract from a patient's ability to accurately discern or define spinal pain or tenderness

Additionally, for patients who have not yet reached their 15th birthday

- Neck pain or torticollis
- High-impact diving incident or high-risk MVC
- Substantial torso injury
- Conditions predisposing to spine injury
- Inability to assess any of above

If NO to all

Spinal precautions not indicated.

If yes to any of the above, minimum of cervical collar

Does the patient have one or more of the following?

- Neurological deficit sensory/motor or GCS less than 15
- Inability to ambulate
- Unable to respond during assessment

NO

SPINAL PRECAUTIONS
Apply cervical collar only

YES

SPINAL IMMOBILIZATION
Perform complete spinal immobilization including cervical collar and long backboard
CCC. TRAUMA PROTOCOL: TRAUMA ARREST

1. Inclusion Criteria
 Patient in cardiac arrest that is suspected to be due to traumatic etiology. Early cardiac arrest secondary to trauma is usually due to severe hypoxia, neurologic injury, or massive hemorrhage.

2. Treatment
 a) Rapid assessment and extrication
 b) Determine if patient meets the criteria for termination of resuscitation for a patient in traumatic arrest. If patient meets criteria, discontinue resuscitation. If criteria are not met, continue resuscitation.
 c) Perform spinal motion restriction for blunt trauma patients only. Patients with isolated penetrating trauma should not have spinal motion restriction. If mechanism includes both blunt and penetrating trauma, perform spinal motion restriction.
 d) CPR with high-quality chest compressions and minimal interruptions.
 e) Consider AED if arrest is believed to be medical in nature and the patient meets the criteria.
 f) Treat reversible causes of traumatic arrest.
 (1) Open airway and ensure adequate ventilation, insert necessary adjunct; consider the need for advanced airway earlier in the resuscitation of the trauma arrest patient.
 (2) Seal open chest wounds with vented chest seals. (NEW ’20)
 (3) Control life-threatening external hemorrhage.
 g) Establish IV/IO access with LR. Begin rapid administration of 20 mL/kg bolus of LR IV/IO.
 h) Treat reversible causes of traumatic arrest.
 (1) Open airway and ensure adequate ventilation, insert necessary adjunct; consider the need for advanced airway earlier in the resuscitation of the trauma arrest patient.
 (2) Seal open chest wounds with vented chest seals. (NEW ’20)
 (3) Control life-threatening external hemorrhage.
 (4) Bilateral Needle Decompression Thoracostomy. Catheters should not be removed once placed.
(5) Establish IV/IO access with LR. Begin rapid administration of 20 mL/kg bolus of LR IV/IO.

(6) Identify rhythm and refer to appropriate algorithm.

EPINEPHRINE IS GENERALLY NOT INDICATED IN THE TREATMENT OF TRAUMATIC CARDIAC ARREST FOR ADULT PATIENTS. *(NEW '20)*

Rapid assessment and extrication

Perform spinal motion restriction for blunt trauma patients only. Patients with isolated penetrating trauma should not have spinal motion restriction performed. If mechanism includes both blunt and penetrating trauma, perform spinal motion restriction.

CPR with high-quality chest compressions and minimal interruptions.

Consider AED if arrest is believed to be medical in nature. *(See Section IV, AED.)*

CONSIDERATION SHOULD BE GIVEN TO TRANSPORTING THE PATIENT TO THE NEAREST EMERGENCY DEPARTMENT OR ADULT TRAUMA CENTER IF THE PEDIATRIC TRAUMA CENTER IS MORE THAN 15 MINUTES ADDITIONAL TRANSPORT TIME!

Establish IV/IO access with LR.

If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. If patient’s condition does not improve, administer the second bolus of fluid at 20 mL/kg LR IV/IO.

If traumatic arrest is suspected due to multi-system blunt trauma, or due to penetrating neck, chest, or abdominal trauma, bilateral needle decompressions should be performed. Catheters should not be removed once placed.
Older adults
- Risk of injury/death increases after age 55
- SBP less than 110 may indicate shock after age 65
- Low-impact mechanisms (e.g., ground-level falls) may result in severe injury

Children
(Should be triaged to Pediatric Trauma Center)

Category Bravo
- 2 or more proximal long-bone fractures
- Amputation proximal to wrist or ankle
- Chest wall instability or deformity (e.g., flail chest)
- Pelvic fracture
- Crushed, degloved, mangled, or pulseless extremity
- Open or depressed skull fracture
- Penetrating injuries to head, neck, torso, or extremities proximal to elbow and knee

Category Charlie
- High Risk Auto Crash
 - Intrusion (including roof) greater than 12 in. occupant site; greater than 18 in. any site
 - Ejection (partial or complete) from vehicle
 - Death in same passenger compartment
 - Vehicle telemetry data consistent with high risk of injury
- Falls
 - Adult: greater than 20 feet (one story is equal to 10 feet)
 - Pediatric: greater than 10 feet or 3 times the child’s height
- Rollover without restraint
- Auto v. pedestrian/bicyclist thrown, run over, or with significant (greater than 20 mph) impact
- Motorcycle crash greater than 20 mph
- Exposure to blast or explosion

Category Delta
- Older adults
 - Risk of injury/death increases after age 55
 - SBP less than 110 may indicate shock after age 65
 - Low-impact mechanisms (e.g., ground-level falls) may result in severe injury
- Children
 (Should be triaged to Pediatric Trauma Center)
- Burns
 - Without trauma mechanism, triage to Burn Center
 - With trauma mechanism, triage to Trauma Center
- Pregnancy greater than 20 weeks
- EMS clinician judgment
- Anticoagulants and bleeding disorders
 (Patients with head injury are at high risk for rapid deterioration)

Consider medical direction and transport to trauma center. Patients within a 30-minute drive time of the closest appropriate trauma/specialty center shall go by ground unless there are extenuating circumstances. Receiving Trauma Center medical consultation required when considering whether helicopter transport is of clinical benefit (refer to GPC Section I).

When in doubt, take patient to an appropriate Trauma Center.
IV. APPENDICES

A. GLOSSARY

AED: Automated External Defibrillation or Automated External Defibrillator

Alternative Airway Device: An airway adjunct other than an endotracheal tube that may include the laryngeal tube airway device (e.g., King LTS-D™) or laryngeal mask airway with design to facilitate hospital endotracheal intubation

AMI: Acute Myocardial Infarction

APGAR score: An acronym and method of scoring to determine the condition of a newly born infant (see APGAR chart on page 114)

Apnea: An absence of spontaneous respirations

Aspiration: The act of taking fluid (e.g., vomitus, mucus, or blood) from the body via a suction device or the act of taking foreign material or vomit into the lungs

Asymptomatic: The lack of any evidence or indication of illness, disease, or physical disturbance of patient’s condition

AVPU: A method of determining and recording a patient’s mental status or level of consciousness where “A” stands for Alert, “V” stands for responsive to Verbal stimuli, “P” stands for responsive to Painful stimuli, and “U” stands for Unresponsive

Barotrauma: Injury sustained as a result of exposure to excessive environmental pressure changes (e.g., blast injury or underwater pressure injury)

BPM: Breaths per minute

BSI: Body Substance Isolation

BVM: Bag-Valve-Mask

Carte blanche: Full discretionary power

Children with Special Healthcare Needs (CSHN): Children with chronic illness or conditions requiring specialized assessment, treatment, technology, or transport destination

CISM: Critical Incident Stress Management

Clinician: Includes EMR, EMT, CRT-(I), and paramedic

Commercial ambulance: Ambulance licensed by the State Office of Commercial Ambulance Licensing and Regulation
Continuous CPR: Chest compressions asynchronous with ventilation and infrequent, minimal interruptions (less than 10 seconds each)

COPD: Chronic Obstructive Pulmonary Disease (e.g., asthma, emphysema, bronchitis)

Cricothyroidotomy (needle or surgical): A syringe with a needle attached or a scalpel is used to make a puncture hole or surgical incision through the cricothyroid membrane that overlies the trachea. A needle catheter or ET tube is passed into the trachea and then attached to a jet insufflation device or bag-valve device to ventilate the patient.

Critical: Approaching death or having the nature of a crisis (e.g., time-critical, critical injury)

CRT-(I): Cardiac Rescue Technician-Intermediate

CVA: Cerebral Vascular Accident/Stroke

Cyanotic: Bluish color of the skin or mucus membranes caused by lack of oxygen to the tissue

DCAP BTLS: Acronym for signs of injuries to assess during a physical examination of patients: D = Deformity, C = Contusions, A = Abrasions, P = Punctures/penetrations, B = Burns, T = Tenderness, L = Lacerations, S = Swelling

Defibrillation: Administration of electrical current(s) to the heart in an effort to normalize rhythm

Defibrillation set (stacked shocks): Includes a set of three successive shocks either biphasic or monophasic standard 200 J, 300 J, 360 J, or peds 2–4 J/kg

Distracting Injury: Any injury (e.g., fracture, chest, or abdominal trauma) associated with significant discomfort that could potentially distract from a patient’s ability to accurately discern or define spinal column pain or tenderness

DNR: Do Not Resuscitate

Dystonic: Any impairment of muscle tone, which may be manifested by prolonged muscle contractions that may cause twisting and repetitive movements or abnormal posture. These movements may be in the form of rhythmic jerks. Symptoms that “appear” to be of a focal seizure-like nature in an awake and alert person with no history of seizures but who probably has a recent history of anticholinergic medication use (e.g., anti-psychotic, anti-vomiting).

EJ: External Jugular vein of the neck; peripheral IV access site
Emergency Information Form: A two-page form, designed by the American Academy of Pediatrics and American College of Emergency Physicians (AAP and ACEP, respectively), that provides a brief summary of special health care needs including: diagnosis, usual pattern of disease, emergency action plan, primary and specialty doctors and hospitals can be downloaded and data entered at http://www.aap.org/advocacy/eif.doc.

Emetic: Referring to a substance that causes vomiting

eMEDS®: electronic Maryland EMS Data System (a patient care reporting system)

EMR: Emergency Medical Responder

EMS: Emergency Medical Services

EMT: Emergency Medical Technician

EOC: Emergency Operations Center

Erythema: Redness or inflammation of the skin or mucous membranes that is the result of dilatation and congestion of superficial capillaries

ETA: Estimated Time of Arrival

ETCO2: Non-invasive measurement (numeric and/or waveform) of carbon dioxide (CO2) levels in exhaled breaths (end-tidal CO2)

Extrapyramidal: Pertaining to tissues and structures outside of the cerebrospinal pyramidal tracts of the brain that are associated with movement of the body, excluding stimulation from the motor neurons, the motor cortex, and the corticospinal and corticobulbar tracts. Symptoms that “appear” to be of a focal seizure-like nature in an awake and alert person with no history of seizures but who probably has a recent history of anticholinergic medication use (e.g., anti-psychotic, anti-vomiting).

Fluid Bolus: The administration of a fluid dose as rapidly as possible, usually over five to twenty minutes, to a patient with clinical signs of shock

GCS: Glasgow Coma Scale (a tool to evaluate injury and illness severity)

Hemodynamically Stable: When a patient’s vital signs (including pulse oximeter or EKG if available) are all within normal for the patient’s age range, the patient does not have active bleeding, and there are no signs of distress (skin conditions or capillary refill are normal) as observed over time

Hemodynamically Unstable: When a patient exhibits any of the following: abnormal vital signs for age range (including pulse oximeter or EKG if available), active bleeding, or there are signs of distress (skin conditions or capillary refill are abnormal)

Hemostatic Dressing: A bandage or gauze with impregnated hemostatic agent that hastens the hemostasis/clotting process

HTN: Hypertension
Hypoxia: Too little oxygen in the cells

IM: Intramuscular injection

IN: Intranasal administration

IV: Intravenous line or administration of medication through IV

IVP: Intravenous Push

IWMI: Inferior Wall Myocardial Infarction

J: Joules or watts-seconds of electrical energy for defibrillation or cardioversion

JVD: Jugular Vein (external) Distention

kg: Kilogram, metric measure of weight equal to 1,000 grams (1 kg = 2.2 pounds)

KVO: Keep Vein Open. A slow IV flow rate.

Laryngectomy: The removal of the larynx and separation of the airway from the mouth, nose, and esophagus. Patients with a laryngectomy breathe through an opening in the neck called a stoma. Patients with a laryngectomy are not able to breathe or be intubated through the mouth or nose.

Lividity: Venous pooling in dependent body parts

LOC: Level of Consciousness

LR: Lactated Ringer’s (a type of isotonic IV solution)

MAIS: Maryland Ambulance Information System for recording confidential patient care data (a patient care report).

MCI: Mass Casualty Incident. Occurs when the number of victims exceeds the number of medical personnel or resources immediately available and is declared by the local jurisdiction.

Meconium: The first feces of an infant

Medical Consultation (On-Line Medical Direction): With an atmosphere of courtesy and respect, direct voice/data communication between a clinician and an EMS Base Station physician, or a jurisdictionally affiliated physician, or with an “on-scene physician.” This communication is bi-directional and provides the clinician with medical direction while providing the physician or the receiving hospital with valuable information on the patient. This exchange can take place on-scene, over a telecommunications device, or in the hospital setting.

Medical Protocol: A guideline for the provision of patient care

mL: Milliliter (the symbol for a metric measure of volume)
MOI: Mechanism of Injury

MOLST: Medical Orders for Life-Sustaining Treatment

NDT: Needle Decompression Thoracostomy

Near Drowning: A short duration of submersion under water with possible short-term loss of consciousness

Neonatal (also neonate): A term that describes an infant from 1 hour to 28 days of life

Newly Born (also called newborn): A term that describes an infant within the first hour after delivery

NOI: Nature of Illness

Notification: An “information only call” directly to the receiving hospital through the jurisdictional EOC or EMS communication system not requiring medical consultation and that may follow local standing operational procedures

NRB: Non-Rebreather Mask

NTG: Nitroglycerin

Nurse Practitioner: An individual who has been licensed as a Registered Nurse and certified as a Nurse Practitioner by the Maryland Board of Nursing. This does not include individuals who are only Registered Nurses or Licensed Practical Nurses.

OIC: Officer in Charge

On-Scene Physician: On-Scene Physician may be the patient’s identified private physician or a bystander physician who is physically on location. Care rendered or orders given by the on-scene physician should be documented, including the identification of the physician. All on-scene medical direction shall be consistent with The Maryland Medical Protocols for Emergency Medical Services. Any medical procedure that is not consistent with the protocols shall only be rendered by the on-scene physician, who shall also accompany the patient to the hospital. Any extraordinary care by EMS clinicians pursuant to the protocols may be approved only by the EMS Base Station physician or a system medical director (based on COMAR 30.02.03.02A.).

OPQRST: Used to recall pertinent questions (Onset, Provocation, Quality, Radiation, Severity, Time) to ask when obtaining a patient history for medical emergencies

Optional Supplemental Program (OSP): A voluntary jurisdictional program that requires MIEMSS approval

Pallor: An unnatural paleness or absence of color in the skin
PCM: Patient Controlled Medications (a medication delivery system under a patient’s control)

PCR: Patient Care Report (equivalent to MAIS) document used to record pertinent patient information regarding assessment, treatment, and transport (this is a confidential medical record)

Pilot Program (PP): A program designed to test a new project or procedure in order to determine its effect on EMS (requires MIEMSS approval and reporting all uses to MIEMSS)

Plethora: A term applied to the beefy red coloration of a newborn

PMD: Program Medical Director

PO: By mouth (*per os*)

PPE: Personal Protective Equipment

Pulse Oximetry: A non-invasive measurement of arterial oxygen saturation using infrared absorption frequencies

PVC: Premature Ventricular Contraction

Recovery Position: The position (patient flat on left lateral side) or placement of patients to reduce risk of aspiration

RMD: Regional Medical Director

RVMI: Right Ventricular Myocardial Infarction

SAFER: Stabilize, Assess and acknowledge, Facilitate, Encourage, and Recovery OR Referral

SAMPLE: Used to aid in obtaining pertinent patient history (*S* = Symptoms and signs patient is exhibiting, *A* = patient Allergies, *M* = patient Medications (prescription and non-prescription), *P* = Past medical history, *L* = what and when was the patient’s Last oral intake, *E* = Events prior to arrival, or simply, the history of the current emergency)

SC: Subcutaneously

Sign: Any objective evidence or indication of illness, disease, or physical disturbance of patient’s condition

SL: Sublingual (under the tongue)
SMOI: Significant Mechanism Of Injury

SOP: Standard Operational Procedure (defined by local jurisdiction or region)

Spinal Motion Restriction: The act of placing a patient on a backboard with cervical collar for the purpose of trying to prevent excessive movement of the spinal column

Spinal Protection: The act of protecting the spinal cord from further injury

Standing Orders: Orders, rules, regulations, or procedures prepared as guidelines in the preparation and carrying out of medical and surgical procedures

Sublingually: Under the tongue

Symptom: Any subjective evidence of disease or of a patient’s condition (such as evidence perceived by the patient)

Symptomatic: The subjective evidence or indication of illness, disease, or physical disturbance of patient’s condition

Syncope: A fainting spell. It usually follows a feeling of lightheadedness and may often be prevented by lying down. Syncope may also result from any number of heart, neurologic, or lung disorders.

System Medical Director: Means any of the following: Executive Director of MIEMSS, State EMS Medical Director, Associate State Medical Director for Pediatrics, Regional Medical Directors, Associate Regional Pediatric Medical Directors, EMS Operational Program Medical Directors, and Assistant EMS Operational Program Medical Directors

TOI: Type of Incident to which EMS clinicians may be called upon to respond (e.g., ill and/or injured patients, hazardous materials incidents, fires, mass casualty incidents)

Tracheostomy: An incision into the trachea (windpipe) that forms a temporary or permanent opening called a stoma. A tube is inserted through the opening to allow passage of air and removal of secretions.

Vagal: Pertaining to the vagus nerve (the tenth cranial nerve, which is essential for speech, swallowing, and slowing of the heart rate)

VF: Ventricular Fibrillation

Volume-Sensitive Children: Children who need smaller fluid bolus volumes due to special needs including: neonates (1 hour to 28 days of age), congenital heart diseases, chronic lung disease, or chronic renal failure

VT: Ventricular Tachycardia

Vulnerable Adult: An adult who lacks the physical or mental capacity to provide for his or her daily needs (Digest of Criminal Law)
B. PROCEDURES, MEDICAL DEVICES, AND MEDICATIONS FOR EMS AND COMMERCIAL SERVICES

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>EMR</th>
<th>EMT</th>
<th>CRT</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMINISTRATION OF MEDICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buccal, Oral, Sublingual</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>SC, IV, Rectal, Nebulizer</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Intramuscular</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
<td>SO</td>
</tr>
<tr>
<td>Intranasal</td>
<td>SO</td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Intravenous</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Intradermal PPD (Public Safety Personnel only)</td>
<td>–</td>
<td>–</td>
<td></td>
<td>OSP</td>
</tr>
<tr>
<td>AIRWAY MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Airway Device (King Airway®)</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>BiPAP</td>
<td>–</td>
<td>–</td>
<td></td>
<td>OSP</td>
</tr>
<tr>
<td>Carbon Dioxide Detector (ALS required)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Capnograph (ALS required since 2015)</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>CPAP</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Cricothyroidotomy</td>
<td>–</td>
<td>–</td>
<td></td>
<td>PP</td>
</tr>
<tr>
<td>Direct Laryngoscopy</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Gastric Tube (BLS “Burp,” ALS insert)</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Laryngeal Mask Airway Device</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>Nasotracheal Intubation</td>
<td>–</td>
<td>–</td>
<td></td>
<td>SO</td>
</tr>
<tr>
<td>Oropharyngeal/Nasopharyngeal Airway</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Oronasal Intubation</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Needle Decompression Thoracostomy (NDT)</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Pulse Oximeter</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Suction</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Ventilator</td>
<td>–</td>
<td>–</td>
<td></td>
<td>OSP</td>
</tr>
<tr>
<td>Video Laryngoscopy</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>CHEMICAL RESTRAINT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>MC</td>
<td>SO</td>
</tr>
<tr>
<td>ELECTROCARDIOGRAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Limb Leads</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>12-Lead</td>
<td>–</td>
<td>OSP</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>ELECTRICAL THERAPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated External Defibrillator</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Cardioversion</td>
<td>–</td>
<td>–</td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Defibrillation</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Transcutaneous Cardiac Pacing</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>GLUCOMETER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>OSP</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>HIGH PERFORMANCE CPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>INTRAVENOUS THERAPY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Jugular Access & Maintenance</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Intravenous Infusion & Maintenance</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Peripheral IV Access/Saline Lock/Blood Drawn</td>
<td>–</td>
<td>OSP</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Peripheral IV Maintenance</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>PRONOUNCEMENT OF DEATH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>SKELETAL STABILIZATION/IMMOBILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>BLEEDING MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourniquet</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Hemostatic Dressing</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Wound Packing</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
</tbody>
</table>

SO Standing Order **MC** Medical Consultation Required **OSP** Optional Supplemental Program **PP** Pilot Program **REA** Research
PROCEDURES, MEDICAL DEVICES, AND MEDICATIONS FOR EMS AND COMMERCIAL SERVICES (Continued)

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th>EMR</th>
<th>EMT</th>
<th>CRT</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALSALVA MANEUVER</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Apnea Monitors</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Arterial Lines and Cardiac Sheaths</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chemotherapy Administration/Drip</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chest tubes with Chest Drainage System</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chest tubes with Heimlich Valve</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Colostomy Bag</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>External Orthopedic Fixators</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Foley Catheter</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Foley Catheter with Irrigation</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Gastrostomy and Jejunal Feeding Tubes (Non-infusing)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>HALO Cervical Immobilization</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>IABP Interaortic Balloon Pump</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ileostomy Tube (Non-infusing)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>iStat</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>REA</td>
</tr>
<tr>
<td>PICC-peripherally inserted central catheter or CVA–central venous access line, capped only</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>PICC-peripherally inserted central catheter or CVA–central venous access line, subclavian/femoral or internal jugular may be monitored if fluid/medication being administered meets protocol. The ALS clinician may access the line in a life-threatening emergency.</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Intraventricular/Intracranial Monitor</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Left Ventricular Assist Device (LVAD) Scene (BLS & ALS)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Left Ventricular Assist Device (LVAD) Interfacility</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nasogastric and Orogastric Tubes (Existing, Non-infusing, or Capped)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Nephrostomy Tubes</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Peak Expiratory Flow Meter</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Pelvic Binder Device</td>
<td>OSP</td>
<td>OSP</td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>Portable Outpatient Fixed Medication Pump/PCA Pump</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Peritoneal Dialysis (Non-active, Capped)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Physical Restraint</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Sengstaken-Blakemore Tube</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Suprapubic Catheter</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Surgical Drains</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Swan-Ganz</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tracheostomy (Existing)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Transtracheal O2 (Outpatient/Existing)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Transvenous Pacemaker (Temporary Transvenous)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ventilators (Acute, Chronic, Scene)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
</tr>
<tr>
<td>Ventricular Peritoneal Shunt</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Wound Vacuum Device</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
</tbody>
</table>

SO Standing Order MC Medical Consultation Required OSP Optional Supplemental Program PP Pilot Program REA Research
B. PROCEDURES, MEDICAL DEVICES, AND MEDICATIONS FOR EMS AND COMMERCIAL SERVICES (Continued)

<table>
<thead>
<tr>
<th>MEDICATIONS</th>
<th>EMR</th>
<th>EMT</th>
<th>CRT</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td></td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Activated Charcoal (Without Sorbitol)</td>
<td></td>
<td>MC</td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td>Adenosine</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Albuterol/Fast-acting Bronchodilator MDI (patient's prescribed)</td>
<td>SO/MC</td>
<td>SO/MC</td>
<td>SO/MC</td>
<td></td>
</tr>
<tr>
<td>Albuterol Sulfate Nebulizer</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Amiodarone</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Antimicrobial (Pre-established interfacility only)</td>
<td></td>
<td></td>
<td></td>
<td>OSP</td>
</tr>
<tr>
<td>Aspirin</td>
<td></td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Atrovent</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Calcium Chloride (10% Solution)</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Dextrose</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Diazepam</td>
<td></td>
<td></td>
<td>MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Diltiazem</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Diluent D5W, NS, LR</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Diphenhydramine Hydrochloride</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Dopamine Hydrochloride (jurisdictional option only when approved by the State EMS Medical Director)</td>
<td></td>
<td></td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td>Epinephrine Auto-Injector</td>
<td>OSP</td>
<td>SO/MC</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Epinephrine Infusion</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Epinephrine Nebulizer</td>
<td></td>
<td></td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td>Epinephrine (1:1,000) Vial or Syringe</td>
<td>OSP</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Epinephrine 1:10,000</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Etomidate (Amidate)</td>
<td></td>
<td></td>
<td></td>
<td>PP</td>
</tr>
<tr>
<td>Fentanyl</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Glucagon</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Glycoprotein IIb/IIla</td>
<td></td>
<td></td>
<td></td>
<td>OSP</td>
</tr>
<tr>
<td>Haldol</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Hemophilia Blood Factor (VIII or IX)</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Heparin (Interfacility transport only)</td>
<td></td>
<td></td>
<td></td>
<td>OSP</td>
</tr>
<tr>
<td>Hydroxocobalamin</td>
<td></td>
<td></td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>Ketamine</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC/Osp</td>
</tr>
<tr>
<td>Ketorolac</td>
<td></td>
<td></td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>Lidocaine</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Magnesium Sulfate</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>MARK I/DuoDote (Atropine & 2 PAM)</td>
<td>OSP</td>
<td>OSP</td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>Midazolam (Versed)</td>
<td></td>
<td></td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Morphine Sulfate</td>
<td></td>
<td></td>
<td>OSP</td>
<td>OSP</td>
</tr>
<tr>
<td>Morphine Sulfate (Infusion)</td>
<td></td>
<td></td>
<td></td>
<td>MC</td>
</tr>
<tr>
<td>Naloxone (IN) Public Safety</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Naloxone (IV, IM, ET)</td>
<td></td>
<td></td>
<td>SO</td>
<td>SO</td>
</tr>
</tbody>
</table>

Key:
- **SO**: Standing Order
- **MC**: Medical Consultation Required
- **OSP**: Optional Supplemental Program
- **PP**: Pilot Program
- **REA**: Research

Edition Date August 1, 2020
Release Date September 14, 2020
B. PROCEDURES, MEDICAL DEVICES, AND MEDICATIONS FOR EMS AND COMMERCIAL SERVICES (Continued)

<table>
<thead>
<tr>
<th>MEDICATIONS</th>
<th>EMR</th>
<th>EMT</th>
<th>CRT</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitroglycerin Paste</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Nitroglycerin (tablet /spray) (patient’s prescribed)</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Nitroglycerin (tablet/spray)</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Ondansetron</td>
<td>–</td>
<td>–</td>
<td>SO/MC</td>
<td>SO/MC</td>
</tr>
<tr>
<td>Oral Glucose</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Oxygen</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Peripheral Parenteral Nutrition (PPN) or Total Parenteral Nutrition (TPN) non-medicated</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Purified Protein Derivative</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
</tr>
<tr>
<td>(Public Safety Personnel only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>–</td>
<td>–</td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td>Sodium Bicarbonate (Infusion)</td>
<td>–</td>
<td>–</td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td>Succinylcholine (Anectine)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
</tr>
<tr>
<td>Terbutaline Sulfate</td>
<td>–</td>
<td>–</td>
<td>SO</td>
<td>SO</td>
</tr>
<tr>
<td>Jurisdictional option only when approved by the State EMS Medical Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccines (Hepatitis and Influenza)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
</tr>
<tr>
<td>(Public Safety Personnel only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vecuronium (Norcuron)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>OSP</td>
</tr>
<tr>
<td>Verapamil</td>
<td>–</td>
<td>–</td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td>Jurisdictional option only when approved by the State EMS Medical Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SO Standing Order
MC Medical Consultation Required
OSP Optional Supplemental Program
PP Pilot Program
REA Research
C. BLS PHARMACOLOGY

1. ACETAMINOPHEN

a) Indications
 Patients ages 2 years and above judged to be in mild to moderate discomfort (e.g., 2–5 on FACES scale)

b) Adverse Effects
 Not clinically significant

c) Precautions
 Administration of acetaminophen for mild to moderate pain does not eliminate the need for transport of the patient to the hospital to receive a comprehensive evaluation of the cause of the pain and appropriate definitive treatment.

d) Contraindications
 (1) Head Injury
 (2) Hypotension
 (3) Administration of acetaminophen or medications containing acetaminophen within the previous four hours

 MANY COMMON COLD PREPARATIONS CONTAIN ACETAMINOPHEN.

 (4) Inability to swallow or take medications by mouth
 (5) Respiratory distress
 (6) Persistent vomiting
 (7) Known or suspected liver disease (including patients suspected of current alcohol ingestion)
 (8) Allergy to acetaminophen
 (9) Patients less than 2 years of age

 e) Preparations Use Unit Dose Only
 (DO NOT USE MULTIDOSE BOTTLE OF LIQUID)
 Unit dose 160 mg/5 mL liquid
 Unit dose 325 mg pill or tablet

 f) Dosage
 (1) Less than 2 years of age: Not indicated
 (2) 2–4 years: Unit dose 160 mg/5 mL
 (3) 5–12 years: TWO unit doses of 160 mg/5 mL each for a total of 320 mg/10 mL
 (4) 13 years and above: FOUR unit doses of 160 mg/5 mL each for a total of 640 mg/20 mL OR in a form of 325 mg pill or tablet x2 for a total of 650 mg with sips of water as tolerated by the patient.
2. ACTIVATED CHARCOAL (WITHOUT SORBITOL)

a) Indications
 Poisoning by mouth

b) Adverse Effects
 May indirectly induce vomiting and cause nausea

c) Precautions
 Does not adsorb all drugs and toxic substances

d) Contraindications
 (1) Altered mental status
 (2) Patients who have received an emetic

e) Preparations
 (1) 25 grams/125 mL bottle
 (2) 50 grams/250 mL bottle

f) Dosage
 (1) Adult: Administer 1 gram/kg
 (2) Pediatric: Administer 1 gram/kg

POISON INFORMATION CENTER RECOMMENDATIONS SHOULD BE SOLICITED IN CONJUNCTION WITH MEDICAL CONSULTATION, BUT MEDICATION ORDERS CAN ONLY BE ACCEPTED FROM AN APPROVED BASE STATION OR CONSULTATION CENTER.
3. ALBUTEROL (PROVENTIL®, VENTOLIN®)
(Patient Prescribed, Patient Assisted)
(Also applies to other fast-acting bronchodilators)

a) Indications
 (1) Signs and symptoms of respiratory distress
 (2) Bronchospasm/wheezing associated with:
 (a) Asthma
 (b) Chronic bronchitis
 (c) Emphysema
 (d) Allergic reactions (anaphylaxis)

b) Adverse Effects
 (1) Tachycardia/palpitations
 (2) Hypertension
 (3) Angina
 (4) Nervousness/anxiety
 (5) Tremors
 (6) Dizziness
 (7) Headache
 (8) Sweating
 (9) Nausea/vomiting
 (10) Sore throat

c) Precautions
 (1) May cause severe bronchospasm from repeated excessive use.
 (2) Patient must have their own physician-prescribed hand-held aerosol inhaler.

d) Contraindications
 Inhaler not prescribed for the patient

e) Preparations
 Hand-held (unit dose) aerosol inhaler

f) Dosage
 (1) Adult: Patient may receive a maximum of 2 doses (4 puffs) over a 30-minute period.
 (2) Pediatric: Patient may receive a maximum of 2 doses (4 puffs) over a 30-minute period.
 (3) Additional doses may be administered with medical consultation.
4. ASPIRIN

a) Pharmacology
 (1) Platelet inhibitor
 (2) Anti-inflammatory

b) Pharmacokinetics
 Blocks platelet aggregation

c) Indications
 Suspected Acute Coronary Syndrome and/or ST Elevation MI (STEMI)
 (NEW '20)

d) Contraindications
 (1) Known hypersensitivity.
 (2) Patients who receive a full dose (324 mg) of aspirin prior to EMS arrival.
 (NEW '20)

e) Adverse Effects
 (1) Heartburn
 (2) Nausea and vomiting
 (3) Wheezing

f) Precautions
 GI bleeding and upset

g) Dosage
 (1) Adult: 324 mg or 325 mg chewed
 (2) Pediatric: Not indicated
5. **EPINEPHRINE (1:1,000)**

a) Indications

1. Moderate to severe allergic reaction with respiratory distress or mild allergic reaction with history of life-threatening allergic reaction
2. Patients with severe asthma

b) Adverse Effects

1. Tachycardia/palpitations
2. Angina
3. Headache
4. Nausea/vomiting
5. Dizziness
6. Hypertension
7. Nervousness/Anxiety
8. Tremors

c) Precautions

Medical consultation must be obtained before administering the EMS service’s manual epinephrine or EMS service’s auto-injector to cardiac (pediatric and adult), pregnant, and adult patients. However, medical consultation is not required for severe allergic reactions with respiratory distress.

d) Contraindications

None in the presence of anaphylaxis

e) Preparations

Epinephrine
(Patient prescribed or EMS supplied)
1. Vial: 1 mg in 1 mL (1:1,000)
2. Preloaded Syringe
 a. Adult: 0.5 mg in 0.5 mL
 b. Pediatric: 0.15 mg in 0.15 mL

f) Dosage

1. **Patients 5 years of age or greater:**
 Adult: 0.5 mg in 0.5 mL IM

2. **Patients less than 5 years of age:**
 Pediatric: 0.15 mg in 0.15 mL IM

3. Additional doses may be administered with medical consultation.
6. EPINEPHRINE AUTO-INJECTOR

a) Indications
 (1) Moderate to severe allergic reaction with respiratory distress or mild allergic reaction with history of life-threatening allergic reaction
 (2) Patients with severe asthma

b) Adverse Effects
 (1) Tachycardia/palpitations
 (2) Angina
 (3) Headache
 (4) Nausea/vomiting
 (5) Dizziness
 (6) Hypertension
 (7) Nervousness/anxiety
 (8) Tremors

c) Precautions
 Medical consultation must be obtained before administering the EMS service’s manual epinephrine or EMS service’s auto-injector to cardiac (pediatric and adult), pregnant, and adult patients. However, medical consultation is not required for severe allergic reactions with respiratory distress.

d) Contraindications
 None in the presence of anaphylaxis

e) Preparations
 Epinephrine Auto-injector (single or multi-dose) only
 (Patient prescribed or EMS supplied)
 (1) Adult: 0.3 mg
 (2) Pediatric: 0.15 mg

 CONSIDER MEDICAL CONSULTATION FOR PATIENTS WITH CARDIAC HISTORY.

f) Dosage
 (1) Less than 5 years of age: 0.15 mg IM in the lateral thigh via epinephrine auto-injector or manual administration 0.15 mg in 0.15 mL IM
 (2) 5 years and greater: administer 0.3 mg IM in the lateral thigh via epinephrine auto-injector or manual administration 0.5 mg in 0.5 mL IM
 (3) Additional doses may be administered with medical consultation.
7. NALOXONE (NARCAN®) PUBLIC SAFETY AND EMR

a) Pharmacology
 Reverses all effects due to opioid (morphine-like) agents. This drug will reverse the respiratory depression and all central and peripheral nervous system effects.

b) Pharmacokinetics
 (1) Onset of action is within a few minutes with intranasal (IN) administration.
 (2) Patients responding to naloxone may require additional doses and transportation to the hospital since most opioids/narcotics last longer than naloxone.
 (3) Has no effect in the absence of opioid/narcotic.

c) Indications
 To reverse respiratory depression induced by opioid/narcotic agent.

d) Contraindications
 Patients under 28 days of age

e) Adverse Effects
 Opioid withdrawal

f) Precautions
 (1) Naloxone may induce opiate withdrawal in patients who are physically dependent on opioids.
 (2) Certain drugs may require much higher doses of naloxone for reversal than are currently used.
 (3) Should be administered and titrated so respiratory efforts return, but not intended to restore full consciousness.
 (4) Intranasal naloxone must be administered via nasal atomizer.
 (5) Naloxone has a duration of action of 40 minutes; the effect of the opioid/narcotic may last longer than naloxone and patients should be encouraged to be transported.

CLINICIANS MUST CONTACT A BASE STATION PHYSICIAN FOR PATIENTS WISHING TO REFUSE TRANSPORT AFTER BLS ADMINISTRATION OF NALOXONE.

g) Dosage
 (1) Adult: Administer 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 (2) Pediatric (child aged 28 days to adult): Administer 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 (3) Repeat as necessary to maintain respiratory activity.
8. **NITROGLYCERIN**
(Patient Prescribed, Patient Assisted)

a) **Indications**
 (1) Patient must have own prescribed sublingual nitroglycerin.
 (2) Chest pain

b) **Adverse Effects**
 (1) Hypotension
 (2) Headache
 (3) Dizziness
 (4) Tachycardia

c) **Precautions**
 (1) Reassess blood pressure before and after administration.
 (2) If systolic blood pressure drops more than 20 mmHg, obtain medical consultation before further administration.

d) **Contraindications**
 (1) Blood pressure below 90 mmHg systolic
 (2) Heart rate less than 60
 (3) Medication not prescribed for the patient
 (4) Pediatric patient under age 13
 (5) Any patient having taken medication for Pulmonary Artery Hypertension (e.g., Adcirca® or Revatio®) or erectile dysfunction (e.g., Viagra®, Levitra®, or Cialis®) within the past 48 hours. Medical consultation is required to override this contraindication.

e) **Preparations**
 Spray or tablet

f) **Dosage**
 (1) Adult: One tablet or one spray sublingually
 (a) Repeat in 3 to 5 minutes if chest pain persists
 (b) Maximum of three doses (a combination of patient-administered and EMT-administered) of nitroglycerin

 (2) Pediatric: (nitroglycerin contraindicated for children under age 13)

 (3) Additional doses may be administered with medical consultation.
9. ORAL GLUCOSE

a) Indications
 (1) Altered mental status with known diabetic history
 (2) Unconscious for an unknown reason

b) Adverse Effects
 Not clinically significant

c) Precautions
 Patient without gag reflex may aspirate.

d) Contraindications
 Not clinically significant

e) Preparations
 10–15 grams of glucose (contained in 24, 30, or 37.5 gram tube)

f) Dosage
 (1) Adult: Administer 10–15 grams of glucose paste between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.
 (2) Pediatric: Administer 10–15 grams of glucose paste between the gum and cheek; this may be accomplished through several small administrations. Consider single additional dose of glucose paste if not improved after 10 minutes.
10. OXYGEN

a) Pharmacology
 (1) Increases oxygen content of the blood
 (2) Improves tissue oxygenation
 (3) Decreases energy expended for respirations

b) Pharmacokinetics
 Changing the percentage of inspired oxygen results in an increased blood and tissue level equilibration within 5–20 minutes.

c) Indications
 (1) If evidence of hypoxia (Less than 94% SpO₂)
 (2) Respiratory distress
 (3) Cardiopulmonary arrest
 (4) Trauma
 (5) Suspected CO exposure
 (6) Dyspnea

d) Contraindications
 Not clinically significant

e) Adverse Effects
 High concentrations of oxygen will reduce the respiratory drive in some COPD patients; these patients should be carefully monitored.

f) Precautions
 (1) Never withhold oxygen from those who need it.
 (2) Oxygen should be given with caution to patients with COPD.
 (3) Simple or partial rebreather face masks must be supplied with a minimum 6 lpm.
 (4) Non-breather (NRB) face masks must be supplied with a minimum 12 lpm.

g) Dosage
 (1) Adult: Administer 12–15 lpm via NRB mask or 2–6 lpm via nasal cannula, as needed.
 CO exposure: Administer 100% oxygen via NRB mask. Maintain SpO₂ at 100%
 (2) Pediatric: Administer 12–15 lpm via NRB mask or 2–6 lpm via nasal cannula, as needed.
 CO exposure: Administer 100% oxygen via NRB mask. Maintain SpO₂ at 100%

<table>
<thead>
<tr>
<th>Percent O₂ Saturation</th>
<th>Ranges</th>
<th>General Patient Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>94–100%</td>
<td>Normal</td>
<td>Give oxygen as necessary</td>
</tr>
<tr>
<td>91–93%</td>
<td>Mild Hypoxia</td>
<td>Give oxygen as necessary</td>
</tr>
<tr>
<td>86–90%</td>
<td>Moderate Hypoxia</td>
<td>Give 100% oxygen and assist ventilations if necessary</td>
</tr>
<tr>
<td>less than or equal to</td>
<td>Severe Hypoxia</td>
<td>Give 100% oxygen and intubate if indicated</td>
</tr>
<tr>
<td>85%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INACCURATE OR MISLEADING SpO₂ READINGS MAY OCCUR IN THE FOLLOWING PATIENTS: HYPOTHERMIC, HYPOPERFUSION (SHOCK), CO POISONING, HEMOGLOBIN ABNORMALITY, ANEMIA, AND VASOCONSTRICTION.
D. ALS PHARMACOLOGY

1. ACETAMINOPHEN

 a) Indications
 Patients ages 2 years and above judged to be in mild to moderate discomfort (e.g., 2–5 on FACES scale)

 b) Adverse Effects
 Not clinically significant

 c) Precautions
 Administration of acetaminophen for mild to moderate pain does not eliminate the need for transport of the patient to the hospital to receive a comprehensive evaluation of the cause of the pain and appropriate definitive treatment.

 d) Contraindications
 (1) Head injury
 (2) Hypotension
 (3) Administration of acetaminophen or acetaminophen containing medications within the previous four hours

 MANY COMMON COLD PREPARATIONS CONTAIN ACETAMINOPHEN.

 (4) Inability to swallow or take medications by mouth
 (5) Respiratory distress
 (6) Persistent vomiting
 (7) Known or suspected liver disease (including patients suspected of current alcohol ingestion)
 (8) Allergy to acetaminophen
 (9) Patients less than 2 years of age

 e) Preparations Use Unit Dose Only
 (DO NOT USE MULTIDOSE BOTTLE OF LIQUID)
 Unit dose 160 mg/5 mL liquid
 Unit dose 325 mg pill or tablet

 f) Dosage
 (1) Less than 2 years of age: Not indicated
 (2) 2–4 years: Unit dose 160 mg/5 mL
 (3) 5–12 years: TWO unit doses of 160 mg/5 mL each for a total of 320 mg/10 mL
 (4) 13 years and above: FOUR unit doses of 160 mg/5 mL each for a total of 640 mg/20 mL OR in a form of 325 mg pill or tablet x2 for a total of 650 mg with sips of water as tolerated by the patient.
2. ACTIVATED CHARCOAL (WITHOUT SORBITOL)

a) Pharmacology
 Variable drug or toxin absorption when ingested

b) Pharmacokinetics
 Adsorbs poisons and prevents toxins from entering body systems

c) Indications
 Poisoning by mouth

d) Contraindications
 (1) Altered mental status
 (2) Patients who have received an emetic

e) Adverse Effects
 Not clinically significant

f) Precautions
 Does not adsorb all drugs and/or toxic substances

g) Dose
 (1) Adult: Administer 1 gram/kg
 (2) Pediatric: Administer 1 gram/kg

POISON INFORMATION CENTER RECOMMENDATIONS SHOULD BE SOLICITED IN CONJUNCTION WITH MEDICAL CONSULTATION, BUT MEDICATION ORDERS CAN ONLY BE ACCEPTED FROM AN APPROVED BASE STATION OR CONSULTATION CENTER.
3. ADENOSINE (ADENOCARD®)

a) Pharmacology
 (1) Naturally occurring purine nucleoside
 (2) Used to treat narrow complex tachycardia, PSVT with WPW
 (3) Slows conduction through the AV node
 (4) No effect on ventricular contractility
 (5) Causes peripheral vasodilatation (often dramatic)

b) Pharmacokinetics
 Onset of action within 5–20 seconds following an IV dose; half-life is 10 seconds

c) Indications
 (1) To slow the rate of narrow complex tachycardia
 (2) Is only effective on SVT/PSVT
 (3) No effect on VT, atrial fibrillation, or flutter
 (4) In stable, wide complex tachycardia (possible VT) for pediatric with caution

d) Contraindications
 (1) Known hypersensitivity
 (2) History of moderate to severe asthma or active bronchospasm
 (3) Polymorphic or irregular wide complex tachycardia

e) Adverse Effects
 Flushing, dyspnea, chest pressure, nausea, headache, dizziness, and hypotension

f) Precautions
 (1) Effects antagonized by theophylline.
 (2) Effects enhanced by dipyridamole (Persantine®), digitalis, carbamazepine, calcium channel blockers, and benzodiazepines.
 (3) Be prepared for up to 40 seconds of asystole

g) Dosage
 (1) Adult:
 6 mg rapid IVP bolus followed by a rapid flush
 Give 12 mg if no response within 2 minutes.
 Give 12 mg more if no response within another 1–2 minutes.
 REDUCE DOSAGE BY HALF FOR PATIENTS WITH TRANSPLANTED HEARTS AND THOSE TAKING DIPYRIDAMOLE OR CARBAMAZEPINE.

 (2) Pediatric: 0.1 mg/kg rapid IVP/IO; maximum initial dose 6 mg.
 Second and third doses: 0.2 mg/kg rapid IVP/IO; maximum single additional dose 12 mg.
4. ALBUTEROL (PROVENTIL®, VENTOLIN®)

a) Pharmacology
 (1) Synthetic sympathomimetic amine (a type of stimulant)
 (2) Stimulates beta-2 adrenergic receptors of the bronchioles
 (3) Minimal effect on blood pressure
 (4) Minimal cardiac effects
 (5) Main effect is bronchodilation.
 (6) It may cause some vasodilation as evidenced by headache or flushing.

b) Pharmacokinetics
 (1) Bronchodilation begins within 5–15 minutes after inhalation.
 (2) Peak effect occurs in 30–120 minutes.
 (3) Duration of action is usually 3–4 hours.

c) Indications
 (1) To reverse bronchospasm (wheezing)
 (2) Hyperkalemia

d) Contraindications
 Known hypersensitivity

e) Adverse Effects
 Tachycardia, palpitations, peripheral vasodilation, tremors, nervousness, headache, sore throat, PVCs, nausea, and vomiting

f) Precautions
 (1) Bronchospasm may worsen in rare situations due to patient tolerance or hypersensitivity.
 (2) If respirations worsen, consider discontinuing use.
 (3) Should be used with caution in patients with hyperthyroidism or coronary artery disease.
 (4) Use with caution when administering to patients taking MAO inhibitors or tricyclic antidepressants, which may be potentiated by albuterol.
 (5) Medical direction required before administering to pregnant patient or patient having a cardiac history.
g) Dosage

Bronchospasm

(1) Adult: 2.5 mg by nebulized aerosol connected to 6–8 lpm of oxygen; may repeat one time

(2) Pediatric: May repeat one time; connect to 6–8 lpm of oxygen
 (a) Age 2 or older: 2.5 mg by nebulized aerosol
 (b) Age less than 2 years: 1.25 mg by nebulized aerosol

Hyperkalemia

(3) Adult: 20 mg (if available) by nebulized aerosol connected to 6–8 lpm of oxygen

(4) Pediatric
 (a) Age 2 or older: 2.5 mg by nebulized aerosol
 (b) Age less than 2 years: 1.25 mg by nebulized aerosol
5. AMIODARONE

a) Pharmacology
 Prolongs duration and refractory period of action potential. Slows electrical conduction, electrical impulse generation from sinoatrial node, and conduction through accessory pathways. Also dilates blood vessels.

b) Pharmacokinetics
 Amiodarone primarily alters/blocks the potassium and sodium ion permeability across the myocardial membrane, which in effect, stabilizes the ion channels and changes impulse conduction through the myocardium. Amiodarone also has some effects on beta receptors and calcium channels.

c) Indications
 (1) Prevent recurrence of ventricular fibrillation/tachycardia after defibrillation and conversion to supraventricular rhythm
 (2) Ventricular tachycardia (VT)
 (3) Ventricular fibrillation (VF)

d) Contraindications
 (1) Second or third degree AV blocks
 (2) Sensitivity to amiodarone
 (3) Idioventricular escape rhythms
 (4) Accelerated idioventricular rhythm
 (5) Sinus bradycardia or arrest or block
 (6) Hypotension
 (7) Cardiogenic shock
 (8) Ventricular conduction defects
 (9) Iodine hypersensitivity

e) Adverse Effects
 (1) Bradycardia
 (2) Hypotension
 (3) Prolonged QT interval

f) Precautions
 May prolong the QT interval increasing risk of torsades de pointes, and VF. Amiodarone inhibits atrioventricular conduction and decreases myocardial contractility, increasing the risk of AV block or of hypotension with any calcium channel blocker.
g) Dosing

(1) Adult with pulse: 150 mg IV/IO over 10 minutes (mixed in 50 - 100 mL of approved diluent). May repeat once.

(2) Adult without pulse VF/VT/(torsades after magnesium sulfate): 300 mg IV/IO. May repeat one time

150 mg IV/IO

(3) Pediatric with pulse: 5 mg/kg IV/IO over 20 minutes (mixed in 50 - 100 mL of approved diluent)

(4) Pediatric without pulse: 5 mg/kg IV/IO; max single dose 300 mg. May repeat twice to a maximum of 15 mg/kg.
6. ASPIRIN (NEW ’20)

a) Pharmacology
 (1) Platelet inhibitor
 (2) Anti-inflammatory

b) Pharmacokinetics
 Blocks platelet aggregation

c) Indications
 Suspected Acute Coronary Syndrome and/or
 ST Elevation MI (STEMI) (NEW ’20)

d) Contraindications
 (1) Known hypersensitivity.
 (2) Patients who receive a full dose (324 mg)
 of aspirin prior to EMS arrival. (NEW ’20)

e) Adverse Effects
 (1) Heartburn
 (2) Nausea and vomiting
 (3) Wheezing

f) Precautions
 GI bleeding and upset

g) Dosage
 (1) Adult: 324 mg or 325 mg chewed
 (2) Pediatric: Not indicated
7. ATROPINE SULFATE

a) Pharmacology
 (1) Parasympatholytic (vagolytic action)
 (2) Anticholinergic (accelerates the heart rate)

b) Pharmacokinetics
 (1) Accelerated heart rate within minutes of IV injection.
 (2) Peak effect is seen within the first 15 minutes.
 (3) Atropine disappears rapidly from the blood.
 (4) Excreted in the urine within the first 12 hours.

c) Indications
 (1) Symptomatic bradycardia
 (2) Organophosphate poisoning
 (3) Nerve agents

d) Contraindications
 (1) Known hypersensitivity
 (2) Dysrhythmias in which enhancement of conduction may accelerate the ventricular rate and cause decreased cardiac output (e.g., atrial fibrillation, atrial flutter, or PAT with block)
 (3) Relative Contraindications (weigh risk/benefits):
 (a) AV block at His-Purkinje level (second-degree Type II AV Block and third-degree AV Block)
 (b) Suspected acute myocardial infarction or ischemia
 (c) Glaucoma

e) Adverse Effects
 (1) Excessive doses of atropine can cause delirium, restlessness, disorientation, tachycardia, coma, flushed and hot skin, ataxia, blurred vision, dry mucous membranes.
 (2) Ventricular fibrillation and tachycardia have occurred following IV administration of atropine.

f) Precautions
 Not clinically significant
g) Dosage

(1) Adult:
Bradycardia: Administer 0.5–1 mg IVP repeated every 3–5 minutes to a total dose of 0.04 mg/kg

(2) Pediatric:
Bradycardia: Administer 0.02 mg/kg IV/IO; maximum single dose 0.5 mg; ET 0.04–0.06 mg/kg, dilute 5 mL; repeat once

(3) Organophosphate poisoning:
(a) Adult: Administer 2–4 mg IVP or IM every 5–10 minutes.
(b) Pediatric: Administer 0.02 mg/kg IVP/IO or IM every 5–10 minutes.

(4) Nerve agent exposure
See MARK I / DuoDote Protocol.
9. CALCIUM CHLORIDE (10% SOLUTION)

a) Pharmacology
 (1) Increase cardiac contractile state and ventricular automaticity
 (2) Is useful in reversing cardiac arrhythmias due to hyperkalemia (often seen in renal dialysis patients)

b) Pharmacokinetics
 Rapid onset of action with IV administration

c) Indications
 (1) Hyperkalemia
 (2) Hypocalcemia
 (3) To treat adverse effects caused by calcium channel blocker overdose
 (4) Hypotension secondary to diltiazem administration
 (5) Respiratory depression, decreased reflexes, flaccid paralysis, and apnea following magnesium sulfate administration

d) Contraindications
 (1) Not indicated in cardiac arrest except when hyperkalemia, hypocalcemia, or calcium channel toxicity is highly suspected
 (2) Patient currently taking digoxin with suspected calcium channel blocker overdose

e) Adverse Effects
 (1) Bradycardia may occur with rapid injection.
 (2) Syncope, cardiac arrest, arrhythmia, bradycardia

f) Precautions
 (1) Use with caution on patients taking digitalis, as calcium may increase ventricular irritability and precipitate digitalis toxicity.
 (2) If given with sodium bicarbonate, calcium will precipitate.
 (3) Calcium salts may produce coronary and cerebral artery spasm.

g) Dosage
 (1) Adult: Administer 0.5–1 gram SLOW IVP over 10 minutes.
 Maximum dose 1 gram
 Administer 500 mg SLOW IVP for: hypotension following diltiazem administration.
 Respiratory depression, decreased reflexes, flaccid paralysis, and apnea following magnesium sulfate administration
 (2) Pediatric: Administer 20 mg/kg (0.2 mL/kg) SLOW IVP/IO (50 mg/min)
 Maximum dose 1 gram
10. DEXAMETHASONE

a) Indications
 (1) Moderate to severe asthma exacerbation
 (2) Croup
 (3) Anaphylaxis

b) Adverse Effects
 (1) Headache
 (2) Edema
 (3) Vertigo
 (4) Fluid retention
 (5) Adrenal insufficiency and immunosuppression with long-term use
 (6) HTN
 (7) CHF
 (8) Nausea and vomiting
 (9) Dyspepsia
 (10) Anaphylaxis

c) Precautions
 (1) Caution with diabetes
 (2) Known TB
 (3) Osteoporosis
 (4) Hepatic impairment
 (5) CHF
 (6) Seizure disorder

d) Contraindications
 (1) Hypersensitivity to drug
 (2) Known systemic fungal infection
 (3) Premature infants

e) Dosage (IV solution used for PO administration)
 (1) Adult: 10 mg IV (preferred, if established) or PO
 (2) Pediatric:
 (a) Asthma: 0.5 mg/kg PO (preferred) or IV to a maximum of 10 mg
 (b) Croup: 0.5 mg/kg PO/IM/IV to a maximum of 10 mg
11. DEXTROSE

a) Pharmacology
Dextrose is a water-soluble monosaccharide found in corn syrup and honey.

b) Pharmacokinetics
(1) Dextrose restores circulating blood sugar and is rapidly utilized following IV injection.
(2) Excess dextrose is rapidly excreted unchanged in the urine.

c) Indications
Correction of altered mental status due to low blood sugar (hypoglycemia) seizures and cardiac arrest

d) Contraindications
Known hyperglycemia

e) Adverse Effects
May worsen hyperglycemia (high blood sugar)

f) Precautions
(1) May worsen preexisting hyperglycemia
(2) Tissue necrosis if extravasation occurs

g) Dosage
(1) Adult:
 (a) If blood glucose is less than 70 mg/dL, administer 10% dextrose in 50 mL (5 grams) boluses, one minute apart, to a maximum of 250 mL OR 25 grams of 50% dextrose IVP, until:
 (i) the patient has a return to normal mental status, and
 (ii) the patient’s blood glucose is at least 90 mg/dL.
 (iii) If, following 250 mL of 10% dextrose or 25 grams of 50% dextrose, patient has persistently altered mental status and blood glucose less than 90 mg/dL, repeat dosing regimen in (a).

(2) Pediatric:
 (a) **Patient less than 28 days** - if blood glucose is less than 40 mg/dL administer 2 mL/kg of 10% dextrose IV/IO.

 D10W is prepared by mixing one part of D50W with four parts LR.
 Recheck glucose after first dose.

 If blood glucose is less than 40 mg/dL, obtain medical consultation to administer second dose of D10W.

 (b) **Patients 28 days up to 4 years** - if blood glucose is less than 70 mg/dL, administer 2–4 mL/kg of 10% dextrose IV/IO to a maximum of 25 grams.
 Recheck glucose after first dose.

 If blood glucose is less than 70 mg/dL, obtain medical consultation to administer second dose of D10W.
 (i) If unable to start IV and blood glucose is less than 70 mg/dL, administer 0.5 mg glucagon IM/IN.
 (ii) Medical consult for additional dosing to a maximum of 3 mg IM/IN
(c) **Patients 5 years up to patient’s 18th birthday** - if blood glucose is less than 70 mg/dL, administer 2–4 mL/kg of 10% dextrose IV/IO to a maximum of 25 grams. Recheck glucose after first dose.

- If blood glucose is less than 70 mg/dL, obtain medical consultation to administer second dose of D10W.
- (i) If unable to start IV and blood glucose is less than 70 mg/dL, administer 1 mg glucagon IM/IN.
- (ii) Medical consult for additional dosing to a maximum of 3 mg IM/IN
12. DIAZEPAM (VALIUM®)

a) Pharmacology
(1) Sedation, hypnosis, alleviation of anxiety, muscle relaxation, anticonvulsant activity
(2) Little cardiovascular effect

b) Pharmacokinetics
(1) Onset of action is extremely rapid following IV administration.
(2) Half-life ranges from 20–90 minutes.

c) Indications
(1) Sustained and/or recurrent seizures
(2) Severe nerve agent exposure

d) Contraindications
(1) Known hypersensitivity, head injury
(2) Should be used with caution in patients with altered mental status, hypotension, or acute narrow angle glaucoma

e) Adverse Effects
(1) Lightheadedness, motor impairment, ataxia, impairment of mental and psychomotor function, confusion, slurred speech, amnesia
(2) Additive effect with ethanol
(3) Irritability and excitation may be seen paradoxically.

f) Precautions
(1) Respiratory depression may occur with IV administration, especially if given too rapidly.
(2) Respiratory support may be required.
(3) Use with caution in pregnant patients, persons ingesting alcohol, or persons ingesting sedatives.

g) Dosage (paramedic may perform without consult for patients with active seizures if midazolam is not available.)
(1) Adult: Administer 2.5–10 mg in 2.5 mg increments SLOW IVP/IM
 (IM requires all clinicians to obtain medical consultation.)
 Maximum total dose 10 mg
(2) Pediatric: Administer 0.1 mg/kg in 2.5 mg increments SLOW IVP/IO/IM (IM requires all clinicians to obtain medical consultation.)
 Maximum total dose 5 mg
 Rectal Dose: Administer up to 0.2 mg/kg; maximum total dose 10 mg

Severe nerve agent exposure (clinicians may administer without consult):
(3) Adult: Administer 10 mg IM.
(4) Pediatric: greater than 30 kg: Administer 10 mg via auto-injector or 0.1 mg/kg IM, maximum of 10 mg.
13. DILTIAZEM (CARDIZEM®)

a) Class
 Calcium channel blocker

b) Actions
 (1) Inhibits the movement of calcium ions across cardiac muscle cells
 (2) Decreases conduction velocity and ventricular rate

c) Indications
 Symptomatic atrial fibrillation and atrial flutter

d) Contraindications
 (1) Hypotension below 100 mmHg, second or third degree heart block, hypersensitivity to the drug
 (2) Patients less than 18 years of age

e) Precautions
 Use cautiously in patients with renal failure or congestive heart failure.

f) Side effects
 (1) Headache
 (2) Nausea
 (3) Vomiting
 (4) Bradycardia
 (5) Hypotension

g) Significant interactions
 Congestive heart failure may result if used along with beta blockers.

h) Dosage
 (1) Adult
 (a) 0.25 mg/kg (maximum dose 20 mg) by IV bolus administered SLOW IV over 2 minutes; if response is not adequate, repeat in 15 minutes with a dosage of 0.35 mg/kg (maximum dose 25 mg) over 2 minutes.
 (b) For patients older than 50 years of age, borderline blood pressure, known renal failure, or CHF, consider initial bolus 5–10 mg administered IV over 2 minutes.
 (2) Pediatric:
 Contraindicated for patients less than 18 years of age. If needed, consult Pediatric Base Station.
i) Overdose or Toxicity Presentation
 Generally consists of exaggeration of side effects, including severe hypotension and symptomatic bradycardia

j) Treatment of Overdose or Other Adverse Reactions
 (1) Give general supportive measures, monitor vitals, administer oxygen.
 (2) Hypotension:
 (a) If lungs are clear, administer fluid bolus 20 mL/kg of LR; titrate to a systolic blood pressure of 100 mmHg.
 (b) If rales are present, administer fluid bolus, maximum of 250 mL of LR. Titrate to a systolic of 100 mmHg.
 (c) Administer calcium chloride 500 mg SLOW IVP.
 (3) Bradycardia: Consider atropine (0.5 to 1 mg); if necessary, consider pacing.
14. DIPHENHYDRAMINE HYDROCHLORIDE (BENADRYL®)

a) **Pharmacology**
 Antihistamine

b) **Pharmacokinetics**
 (1) Effect begins within 15 minutes of IV dose.
 (2) Peak effect 1–4 hours
 (3) Metabolized by the liver
 (4) The half-life ranges from 2–10 hours.

c) **Indications**
 (1) Allergic reaction
 (2) Anaphylaxis
 (3) Dystonic reactions

d) **Contraindications**
 Known allergy to diphenhydramine

e) **Adverse Effects**
 Drowsiness, loss of coordination, blurred vision, headache,
 hypotension, tachycardia, palpitations, thickening of bronchial
 secretions leading to chest tightness, and wheezing

f) **Precautions** - Should be used with caution in patients with:
 (1) Severe vomiting
 (2) Alcohol intoxication
 (3) Nursing mothers

g) **Dosage (NEW ’20)**
 (1) Adult: Administer 25–50 mg SLOW IVP or IM
 (2) Pediatric: Administer 1 mg/kg SLOW IV or IM
15. DOPAMINE HYDROCHLORIDE (INTROPIN®) (JURISDICTIONAL OPTION ONLY WHEN APPROVED BY THE STATE EMS MEDICAL DIRECTOR - NEW '20)

a) Pharmacology
 (1) Alpha and beta adrenergic receptor stimulator
 (2) Dopaminergic receptor stimulator
 (3) Precursor of norepinephrine
 (4) At low doses, less than 2 mcg/kg/min
 (a) Dilates renal and mesenteric blood vessels
 (b) Venoconstricts
 (c) Arterial resistance varies
 (5) At moderate doses, 2–6 mcg/kg/min beta1 stimulating effect on heart
 Results in increased cardiac output
 (6) High dose, 6–10 mcg/kg/min
 Exhibits alpha1 effects; peripheral vasoconstriction including renal and mesenteric vessels, increases left and right ventricular preload
 (7) Doses greater than or equal to 10 mcg/kg/min
 Alpha1 stimulating effects may reverse mesenteric and renal artery dilatation resulting in decreased blood flow, causing increased preload due to effects on venous system

b) Pharmacokinetics
 (1) Extremely rapid onset of action
 (2) Extremely brief duration of action
 (3) The rate of administration may be used to control the effect of dopamine.

c) Indications
 (1) Cardiogenic shock
 (2) Septic shock
 (3) Anaphylactic shock
 (4) Hypovolemic shock (after sufficient volume replacement)

d) Contraindications
 (1) Preexisting tachydysrhythmias
 (2) Uncorrected hypovolemia
e) **Adverse Effects**
 (1) Anginal pain
 (2) Tachydysrhythmias
 (3) Nausea and vomiting
 (4) Hypertension
 (5) Undesirable degree of vasoconstriction

f) **Precautions**
 (1) Extravasation should be reported to the hospital staff on arrival.
 (2) Patients receiving monoamine oxidase (MAO) inhibitors are extremely sensitive to the effects of dopamine and should receive a much lower dosage than is usually given.
 (3) Patients with pheochromocytoma are extremely sensitive to dopamine and may develop profound hypertension in response to minimal doses.

g) **Dosage**
 (1) For IV/IO infusion only. The preferred route of administration is IV.
 (2) In general, the infusion rate is adjusted to blood pressure and clinical response.
 (3) Adult: Administer 2–20 mcg/kg/min IV drip titrated to BP of 100 systolic or medical consultation selected BP; initial infusion rate 2–5 mcg/kg/min
 (4) Pediatric: Administer 2–20 mcg/kg/min IV drip titrated age specific BP or medical consultation selected BP; initial infusion rate is 2 mcg/kg/min
16. EPINEPHRINE 1:10,000/1:1,000 (NEW ’20)

a) Pharmacology
 (1) The administration of epinephrine causes increases in:
 (a) Systemic vascular resistance
 (b) Systemic arterial pressure
 (c) Heart rate (positive chronotropic effect)
 (d) Contractile state (positive inotropic effect)
 (e) Myocardial oxygen requirement
 (f) Cardiac automaticity
 (g) AV conduction (positive dromotropic effect)
 (2) Causes bronchial dilation by smooth muscle relaxation

b) Pharmacokinetics
 (1) IV administered epinephrine has an extremely rapid onset of action.
 (2) Is rapidly inactivated by the liver
 (3) Subcutaneous administration of epinephrine results in slower absorption due to local vasoconstriction.
 (4) Local massage will hasten absorption.
 (5) Topically applied nebulizer within the respiratory tract, epinephrine has vasoconstrictor properties that result in reduction of mucosal and submucosal edema. It also has bronchodilator properties that reduce airway smooth muscle spasms.

c) Indications
 (1) Medical cardiac arrest and pediatric traumatic arrest
 (2) Moderate to severe allergic reaction/anaphylaxis
 (3) IV push epinephrine should be reserved for cardiac arrest patients
 (4) Epinephrine infusion (IV/IO) should be reserved for patients in shock refractory to fluid bolus or for patients in anaphylactic shock
 (5) Severe asthma
 (6) Respiratory stridor (suspected croup)

d) Contraindications
 (1) Hypertension
 (2) Preexisting tachydysrhythmias with a pulse (ventricular and supraventricular)
 (3) Use with pregnant women should be avoided whenever possible
 (4) IVP epinephrine (1:1,000) should not be administered to any patient with a pulse

e) Adverse Effects
 (1) Tachydysrhythmias (supraventricular and ventricular)
 (2) Hypertension
 (3) May induce early labor in pregnant women
(4) Headache
(5) Nervousness
(6) Decreased level of consciousness
(7) Rebound edema may occur 20–30 minutes after administration to croup patients.

g) Dosage
(1) Cardiac Arrest (NEW ’20)
 (a) Adult:
 (i) Administer 1 mg (1:10,000) IVP/IO every 4 minutes to a maximum of 4 doses for the initial arrest. If arrest recurs following any period of ROSC, administer a maximum of 2 additional doses
 (b) Pediatric:
 (i) Administer 0.01 mg/kg (0.1 mL/kg) of 1:10,000 IVP/IO every 4 minutes to a maximum of 4 doses for the initial arrest. If arrest recurs following any period of ROSC, administer a maximum of 2 additional doses
 (ii) ET: Administer 0.1 mg/kg of 1:1,000, diluted with 5 mL of LR; repeat every 4 minutes to a maximum of 4 doses for the initial arrest. If arrest recurs following any period of ROSC, administer a maximum of 2 additional doses
 (c) Neonate:
 (i) Administer 0.01 mg/kg (0.1 mL/kg) of 1:10,000 IVP/IO every 4 minutes to a maximum of 4 doses for the initial arrest. If arrest recurs following any period of ROSC, administer a maximum of 2 additional doses.
 (ii) ET: Administer 0.1 mg/kg of 1:1,000, diluted with 5 mL of LR; repeat every 4 minutes to a maximum of 4 doses for the initial arrest. If arrest recurs following any period of ROSC, administer a maximum of 2 additional doses
(2) Bradycardia
 (a) Adult: Using epinephrine infusion (1 mg epinephrine in 100 mL LR), administer 1 mL/min (60 drops/min) using a 60 drop-set. If systolic blood pressure remains less than 90 mmHg, obtain medical consultation for further dosing. Infusion pump: 2-10 mcg/min.
 (b) Pediatric:
 (i) Administer 0.01 mg/kg (0.1 mL/kg) of the 1:10,000 IVP/IO; repeat every 3–5 minutes
 (ii) ET: 0.1 mg/kg of 1:1,000, diluted with 5 mL of LR; repeat every 3–5 minutes
(c) Neonate:
(i) Administer 0.01 mg/kg (0.1 mL/kg) of 1:10,000 IVP/IO; repeat every 3–5 minutes
(ii) ET: 0.03 mg/kg of 1:10,000, diluted with 1 mL of LR

(3) Allergic Reaction/Anaphylaxis/Asthma
(a) ADULT
For patients who are in extremis with severe hypotension or impending respiratory failure:
(i) Administer epinephrine 0.5 mg every 5 minutes up to a total of 3 doses.
(ii) If patient remains hypotensive or with impending respiratory failure, administer epinephrine infusion per management of shock with epinephrine infusion (below)

(b) PEDIATRIC
(i) Administer epinephrine: 1:1,000 IM
Less than 5 years of age: administer 0.15 mg in 0.15 mL IM
5 years and greater: administer 0.5 mg in 0.5mL IM
(ii) May repeat IM dose every 5 minutes for a total of 3 doses for severe reactions
(iii) Epinephrine infusion (see management of non-traumatic shock with epinephrine infusion below)

(4) Croup
(a) Adult: not indicated
(b) Pediatric
(i) Administer 2.5 mL of epinephrine 1:1,000 via nebulizer.
If patient does not improve, administer a second dose of 2.5 mL of epinephrine 1:1,000 via nebulizer.

ALL PATIENTS WHO RECEIVE NEBULIZED EPINEPHRINE MUST BE TRANSPORTED BY AN ALS UNIT.

(5) Cardiogenic Shock
(a) If rales are present, administer fluid bolus, titrate to a systolic blood pressure of 90 mmHg or greater. Maximum single of bolus of 250 mL of LR IV.

(b) Additional fluid requires medical consultation.

(c) Initiate epinephrine infusion
(i) Add 1 mg of epinephrine (either 1:1,000 or 1:10,000) in a 100 mL bag of LR or NS
(ii) Use a Microdrip set (60 drops/mL) for infusion administration
(iii) Adult epinephrine infusion dosage:
(1) Administer infusion through a free-flowing IV, ideally 20 gauge or larger, or by IO
(2) Start infusion at 1 mL/min (60 drops/min) IV/IO
(3) Check blood pressure every 5 minutes. If MAP is less than 65 mmHg or systolic blood pressure is less than 90 mmHg, increase to a maximum rate of 2 mL/min (120 drops/min).
(4) If above blood pressure goals are not met upon reaching maximum rate, obtain online medical consultation.

(6) Hypovolemic or Septic Shock
(a) If lungs are clear, administer fluid bolus of 20 mL/kg of LR IV. Titrate to a systolic blood pressure of 90 mmHg (or mean arterial pressure of 65 mmHg). Maximum patient dose of 2,000 mL of LR
(b) If hypotension persists after 2 L of LR are provided, consider additional LR up to a maximum of 30 mL/kg total.
(c) Initiate epinephrine infusion if systolic blood pressure remains less than 90 mmHg (or mean arterial pressure less than 65 mmHg) after IV fluid bolus of 30 mL/kg LR.

(7) Anaphylactic shock: Initiate epinephrine infusion for patients who are in extremis with severe hypotension or impending respiratory failure, after having administered 3 doses of IM epinephrine. (Refer to Anaphylaxis Protocol.)

(8) Neurogenic shock (suspected spinal cord injury which typically presents with hypotension and bradycardia)
(a) If lungs are clear, administer fluid bolus of 20 mL/kg of LR IV. Titrate to a systolic blood pressure of 110 mmHg (or mean arterial pressure of 85 mmHg). Maximum patient dose of 2,000 mL of LR.
(b) Initiate epinephrine infusion if systolic blood pressure remains less than 110 mmHg (or mean arterial pressure less than 85 mmHg).

h) Pediatric epinephrine infusion dosage
(1) The following dosing chart should be used for pediatric patients less than 50 kg (using approved epinephrine infusion and 60 drop set):

<table>
<thead>
<tr>
<th>Weight range (kg)</th>
<th>Initial epinephrine dose</th>
<th>If goal blood pressure not achieved at 5 min, increase to</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS than 10 kg</td>
<td>6 drops/min (0.1 mL/min)</td>
<td>12 drops/min (0.2 mL/min)</td>
</tr>
<tr>
<td>10-19 kg</td>
<td>12 drops/min (0.2 mL/min)</td>
<td>24 drops/min (0.4 mL/min)</td>
</tr>
<tr>
<td>20-29 kg</td>
<td>18 drops/min (0.3 mL/min)</td>
<td>36 drops/min (0.6 mL/min)</td>
</tr>
<tr>
<td>30-39 kg</td>
<td>24 drops/min (0.4 mL/min)</td>
<td>48 drops/min (0.8 mL/min)</td>
</tr>
<tr>
<td>40-49 kg</td>
<td>30 drops/min (0.5 mL/min)</td>
<td>60 drops/min (1.0 mL/min)</td>
</tr>
</tbody>
</table>

(2) Blood pressure goal:
(a) For patients 10 years and older (including adults), systolic blood pressure greater than 90 mmHg;
(b) For patients under 10 years of age, systolic blood pressure greater than 70 + 2x age in years mmHg; OR
(c) Systolic blood pressure ordered by the pediatric base station.

(3) If above blood pressure goal not met after 10 minutes, obtain online medical consultation.
17. FENTANYL
(Required unless Morphine OSP approved)

Pharmacology
(1) Synthetic opioid binds with opiate receptors in the CNS, altering both perception and emotional response to pain.
(2) Fentanyl is significantly more potent than morphine. 100 mcg of fentanyl is equivalent to 10 mg of morphine.

a) Pharmacokinetics
Onset of action is 2–3 minutes after IV dose and effects last 30 minutes to 1 hour.

b) Indications
(1) The patient reports moderate to severe pain.
(2) In the clinician’s judgment the patient will benefit from treatment with an opioid analgesic, including patients who are MOLST and/or EMS/DNR patients or being pre-medicated for a procedure.

c) Contraindications
(1) Hypersensitivity or known allergy to fentanyl
(2) Uncorrected respiratory distress or hypoxemia refractory to supplemental oxygen
(3) Uncorrected hypotension, defined as a persistent systolic pressure less than 90 mmHg.

d) Adverse Effects
(1) Respiratory depression/arrest
(2) Altered mental status
(3) Increased vagal tone due to suppression of sympathetic pathways (slowed heart rate)
(4) Constricted pupils (pinpoint)
(5) Increased cerebral blood flow

e) Precautions
(1) Naloxone reverses all effects.
(2) To reduce the risk of chest wall rigidity (especially in children), fentanyl should be administered slowly and titrated to effect.
(3) Vital signs should be monitored frequently.
(4) Hypotension is a greater possibility in volume-depleted patients.
(5) Elderly patients and those with impaired renal function may be more sensitive to the medication’s effects.

f) Dosage
(1) Adult: Fentanyl IN preferred IV/IO/IM
 (a) Administer 1 mcg/kg to a maximum initial dose of 200 mcg (For IN route, dosing may be limited due to volume limitations - administration of max 1mL per nare).
 (b) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of fentanyl 1 mcg/kg to a maximum dose of 200 mcg.
 (c) Obtain on-line medical direction for additional doses, if required.
(2) Pediatric: Fentanyl IN. If IN route not accessible, IV/IO/IM

(a) Administer 1 mcg/kg to a maximum initial dose of 200 mcg (For IN route, dosing may be limited due to volume limitations - administration of max 1mL per nare).

(b) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of fentanyl 1 mcg/kg to a maximum dose of 200 mcg.

(c) Obtain on-line medical direction for additional doses, if required.
18. GLUCAGON

a) Pharmacology
 (1) Hormone synthesized by the pancreas
 (2) Increases blood glucose concentration
 (3) Inhibits gastric and pancreatic secretions
 (4) May increase heart rate and cardiac output
 (5) May decrease blood pressure
 (6) Increases metabolic rate

b) Pharmacokinetics
 (1) Destroyed by the GI tract and is not effective orally
 (2) Maximum hyperglycemic activity occurs within 30 minutes and disappears after 1–2 hours.
 (3) Relaxation of smooth muscle occurs within 8–10 minutes and persists for 12–27 minutes.
 (4) The half-life is 3–10 minutes.
 (5) Degraded in liver and kidneys

c) Indications
 (1) Patients with altered mental status who are suspected of being hypoglycemic where IV access is not obtainable
 (2) Beta blocker overdose

d) Contraindications
 Known hypersensitivity

e) Adverse Effects
 Nausea and vomiting

f) Precautions
 Glucagon only works if liver has significant glycogen stores.

g) Dosage
 (1) For suspected hypoglycemia without IV access:
 (a) Adult: Administer 1 mg IM/IN (Medical consult for additional dosing to a maximum of 3 mg IM)
 (b) Pediatric:
 (i) 1 mg IM/IN (5 years of age up to patient's 18th birthday) (Medical consult for additional dosing to a maximum of 3 mg IM/IN)
 (ii) 0.5 mg IM/IN (28 days–4 years of age) (Medical consult for additional dosing to a maximum of 3 mg IM/IN)
 (2) For suspected beta blocker overdose:
 (a) Adult: Administer 1 mg IVP every 5 minutes
 (b) Pediatric: Administer every 5 minutes
 (i) 1 mg IVP (5 years of age up to patient's 18th birthday) every 5 minutes
 (ii) 0.5 mg IVP (28 days–4 years of age) every 5 minutes
19. HALOPERIDOL (HALDOL®)

a) Pharmacology
 (1) An effective anxiolytic agent. Very effective in the management of aggressive and violent patients.
 (2) Also has anti-emetic properties. Useful in the management of severe nausea and vomiting.
 (3) Weak anticholinergic (atropine-like) and alpha-blocking agent (vasodilation).

b) Pharmacokinetics
 Onset of action is within 10 minutes of the IM administration.

c) Indications
 Chemical restraint for violent, agitated, and aggressive patients who present a danger to themselves or to others and who cannot be safely managed otherwise. Most violent/agitated patients can be handled with verbal or physical restraint alone.

d) Contraindications
 (1) Children under 5 years of age
 (2) Parkinson’s disease
 (3) CNS depression
 (4) Acute CNS injury
 (5) Excited delirium

e) Adverse Effects
 (1) Extrapyramidal symptoms (dystonic reaction) are the most common side effects. These are generally not encountered with short-term use. In the event that they should develop, a single dose of diphenhydramine 25–50 mg (1 mg/kg for pediatrics to a max of 25 mg) will generally relieve symptoms.
 (2) Hypotension and tachycardia are common (20–25%) but usually self-limiting side effects. Fluid bolus is indicated with a significant drop blood pressure or hypotension.
 (3) Haloperidol has been known to cause torsades de pointes ventricular tachycardia. Once the patient has been medicated, place the patient on a cardiac monitor and monitor for dysrhythmias.
f) **Precautions**
 (1) Violent patients should be physically restrained while the medication is administered.
 (2) May mask subsequent evaluation.

g) **Dosage (May combine with midazolam in same syringe)**
 (1) **Adult**
 (a) **Patient 18–69 years of age:**
 5 mg IM or IV
 (b) **Patient greater than 69 years of age:**
 2.5 mg IM or IV
 (2) **Pediatric**
 (a) **Child less than 5 years of age:**
 Contraindicated
 (b) **Child 5–12 years of age:**
 0.05 mg/kg IM or IV, max of 2.5 mg
 (c) **Patient 13 up to 18th birthday:**
 2.5–5 mg IM or IV
8. IPRATROPIUM (ATROVENT®)

a) Pharmacology
 (1) Anticholinergic (parasympatholytic) bronchodilator
 (2) Bronchodilator is site-specific, not systemic
 (3) Dries respiratory tract secretions
 (4) Most effective in combination with a beta-adrenergic bronchodilator

b) Pharmacokinetics
 (1) Improved pulmonary function in 15–30 minutes
 (2) Peak effects occur in 1–2 hours
 (3) Duration of action is usually 4–5 hours

c) Indications
 (1) Allergic reactions/anaphylaxis
 (2) Bronchial asthma
 (3) Reversible bronchospasms associated with chronic bronchitis and emphysema

d) Contraindications
 (1) Hypersensitivity to the drug
 (2) Hypersensitivity to atropine
 (3) Less than 1 year of age

e) Adverse Effects
 (1) More common: dry mouth, cough, or unpleasant taste
 (2) Less common: vision changes, eye burning or pain, dizziness, headache, nervousness, palpitations, sweating, trembling, chest tightness, rash, hives, or facial sweating

f) Precautions
 (1) Use with caution in patients with congestive heart failure, heart disease, hypertension, glaucoma, and with elderly patients.
 (2) May worsen the condition of glaucoma if it gets into the eyes. Having the patient close their eyes during nebulization may prevent this.
 (3) Not to be used as a single agent—must be used in combination with a beta-agonist.
g) Dosage

(2) Adult:
 Single administration ONLY, 500 mcg (2.5 mL) by nebulized aerosol connected to 6–8 lpm of oxygen in combination with albuterol 2.5 mg.

(2) Pediatric:
 Single administration ONLY. In combination with albuterol, nebulized aerosol is connected to 6–8 lpm of oxygen.
 (a) Less than 1 year of age: contraindicated
 (b) Age 1 year but less than 2 years:
 250 mcg (1.25 mL) by nebulized aerosol
 (c) Age 2 and older:
 500 mcg (2.5 mL) by nebulized aerosol
20. KETAMINE (KETANEST®, KETASET®, KETALAR®)

a) Pharmacology
Hypnotic analgesic

b) Pharmacokinetics
A rapid-acting nonbarbiturate hypnotic analgesic agent characterized by
normal pharyngeal-laryngeal reflexes, normal or enhanced skeletal muscle
tone, and possible cardiovascular and respiratory stimulation.

ONSET OF ACTION FOR IV/IO KETAMINE MAY BE 5–10 MINUTES.
ONSET OF ACTION FOR IN/IM KETAMINE MAY TAKE UP TO 15–20 MINUTES.

c) Indications
(1) The patient reports moderate to severe pain.
(2) The patient displaying signs and symptoms of excited delirium syndrome.
(3) Ventilatory difficulty secondary to bucking or combativeness in intubated
patients. (NEW ’20)
(4) CPR-induced awareness. (NEW ’20)

d) Contraindications
(1) Known hypersensitivity to ketamine
(2) Penetrating eye injury

INDICATED FOR MUSCULOSKELETAL EXTREMITY/BACK PAIN. NOT FOR CHEST PAIN,
ABDOMINAL/FLANK PAIN, OR HEADACHE.

e) Adverse Effects
(1) Although respiration is frequently stimulated, respiratory depression may oc-
cur with rapid IV administration. Laryngospasm has been known to occur.
(2) Although hypotension may occur, blood pressure and heart rate are fre-
quently stimulated.
(3) Involuntary myoclonus that may mimic seizure activity
(4) Possible enhanced secretions
(5) Possible unpleasant dreams and delirium upon emergence from sedation

f) Precautions
(1) The likelihood of respiratory depression and undesired pressor effects is
increased by too rapid IV administration.
(2) Myoclonic movements are possible and should not be confused for, seizure
activity, or emergence from sedation.
(3) Some patients who have received ketamine for control of excited delirium
syndrome go on to requiring advanced airway management. ALS clinicians
should closely monitor such patients to anticipate airway needs.

TO AVOID DOSING ERRORS, CLINICIANS SHOULD BE AWARE AND CONFIRM
PROPER SELECTION OF CONCENTRATION PRIOR TO ADMINISTRATION. KETAMINE IS
PROVIDED FOR IM OR IN ADMINISTRATION IN 100 MG PER ML CONCENTRATION. FOR
IV ADMINISTRATION, KETAMINE IS PROVIDED IN 10 MG PER ML.
g) Dosage

(1) Pain Management

(a) Adult: Administer 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 (i) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 (ii) If IV unavailable, administer 0.5 mg/kg IN/IM (if delivery device is available; divide administration of the dose equally between the nares to a maximum of 1 mL per nare).
 (iii) Reassess in 15 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.5 mg/kg IN/IM.

(b) Pediatric: Administer 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 (i) Reassess in 5-10 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.2 mg/kg IV/IO over 1–2 minutes. Maximum single dose 20 mg.
 (ii) If IV unavailable, administer 0.5 mg/kg IN/IM (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare).
 (iii) Reassess in 15 minutes. If pain remains moderate to severe, then administer a second dose of ketamine 0.5 mg/kg IN/IM.

(2) Excited Delirium Syndrome

(a) Adult
 (i) IV dosing: Administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg.
 a. If severe agitation persists, administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg. Maximum total IV/IO dose 200 mg.
 b. If agitation persists after second dose of IV/IO ketamine, consider midazolam 2.5 mg IV/IO.
 (ii) IM dosing: 4 mg/kg IM. Maximum total IM dose 400 mg.
 a. If severe agitation persists after IM ketamine dose, administer midazolam 5 mg IM.
 b. Additional dose of 4 mg/kg IM ketamine for persistent agitation requires medical consultation.

(b) Pediatric
 (i) IV dosing: For children 13 to 18 years of age, administer 1 mg/kg IV/IO. Maximum single IV/IO dose 100 mg. Maximum total IV/IO dose 200 mg.
 a. Patients who have not yet reached their 13th birthday require medical consult: Administer 1 mg/kg IV/IO. Maximum single IV dose 100 mg. Maximum total IV/IO dose 200 mg.
b. If severe agitation persists, administer 1 mg/kg IV/IO. Maximum single IV dose 100 mg.
c. If agitation persists after second dose of IV ketamine, consider midazolam 0.1 mg/kg in 2.5 mg increments SLOW IVP/IO over 1–2 minutes. Maximal single dose of midazolam 2.5 mg.
(ii) IM dosing: Patients aged 13 to 18 years, administer 4 mg/kg IM. Maximum IM dose 400 mg.
 a. Patients who have not yet reached their 13th birthday require medical consult: Administer 4 mg/kg IM. Maximum IM dose 400 mg.
 b. If severe agitation persists, administer midazolam 2.5 mg IM.
 c. Additional dose of 4 mg/kg IM ketamine for persistent agitation requires medical consultation.

(3) Ventilatory difficulty secondary to bucking or combativeness in intubated patients. (NEW ’20)
 (a) Ketamine may be preferred for patients who have hypotension or possible hypovolemia, or if ventilatory difficulty is thought to be the result of pain response.
 (i) Dose: Administer 2 mg/kg IVP/IO over 60 seconds. May repeat 2 additional doses of 1 mg/kg for IVP/IO every 10–15 minutes to a total of 3 doses as needed. Additional doses require medical consultation.

(4) CPR-induced awareness (NEW ’20)
 (a) Adult
 (i) Consider ketamine 1 mg/kg IV/IO.
 (ii) Repeat doses with medical consultation.
 (b) Pediatric
 (i) Obtain medical consultation from a pediatric base station.
21. KETOROLAC (TORADOL®) (NEW ‘20)

Optional Supplemental Protocol

1. PHARMACOLOGY
 a) Inhibits synthesis of prostaglandin, which, in turn, reduces pain and inflammation
 b) Antipyretic agent
 c) Does not affect CNS, peripheral acting analgesic, therefore, it does not possess the same sedative properties as a narcotic

2. PHARMACOKINETICS
 a) Onset: Approximately 30 minutes
 b) Peak effects: 1-2 hours
 c) Half-life: 4-6 hours

3. INDICATIONS
 a) Management of moderate to severe acute pain
 b) Consider as a first line medication for renal stones/colic
 c) Burns - mild to moderate
 d) Non-traumatic neuromuscular pain

4. CONTRAINDICATIONS
 a) Hypersensitivity to ketorolac, aspirin, and other NSAIDs
 b) Current usage of aspirin or NSAIDs within 6 hours
 c) Severe headache or head injury
 d) Bleeding or clotting disorder
 e) Renal disease or transplant
 f) Active or history of peptic ulcer disease (PUD), active or recent history of GI bleed, and active or history of GI perforation
 g) Pregnancy or breast feeding
 h) Suspected ACS
 i) Trauma with suspected bleeding
 j) Patients who have not yet reached their second birthday

5. ADVERSE EFFECTS
 a) Burning or pain at the injection site
 b) Rash / itching
 c) GI distress
 d) Nausea / vomiting
6. DOSAGE

a) Adult: Administer single dose of 15 mg IV only. No repeat doses.
 If IV is unavailable: Administer single dose of 30 mg IM. No repeat doses.

b) Pediatric:
 (1) Newly born to 2 years of age: Contraindicated
 (2) Age 2 to patients who have not reached their 18th birthday: Administer 0.5 mg/kg IV only to a maximum total dose of 15 mg. No repeat doses.
 If IV is unavailable: Administer 1 mg/kg IM to a maximum total dose of 30 mg. No repeat doses.
22. LACTATED RINGER’S

a) Pharmacology
(1) Isotonic crystalloid solution
(2) Lactated Ringer’s (LR) contains:
 (a) Sodium (Na+) 130 mEq/liter
 (b) Potassium (K+) 4 mEq/liter
 (c) Calcium (Ca++) 3 mEq/liter
 (d) Chloride (Cl-) 109 mEq/liter
 (e) Lactate 28 mEq/liter

b) Pharmacokinetics
 Lactated Ringer’s is a water and electrolyte replacement.

c) Indications
(1) Hypovolemia (limitation in multiple/severe trauma without head injury)
(2) Keep vein open
(3) Fluid boluses

d) Contraindications
 Fluid overload states

e) Adverse Effects
 Rare in therapeutic doses

f) Precautions
(1) Patients receiving Lactated Ringer’s should be monitored to prevent circulatory overload.
(2) Lactated Ringer’s should be used with caution in patients with congestive heart failure or renal failure.

g) Dosage (NEW ’20)
(1) Adult:
 (i) For patients with multiple/severe trauma but without head injury:
 Administer small boluses of LR (maximum single bolus of 250 mL prior to additional blood pressure check) to achieve and maintain a systolic blood pressure of greater than or equal to 90 mmHg.
 (ii) For multiple/severe trauma with head injury: Administer small boluses of LR (maximum single bolus of 250 mL prior to additional blood pressure check) to achieve and maintain a systolic blood pressure greater than or equal to 110 mmHg.
 (iii) For all other patients: Titrate to a systolic pressure of 90 mmHg.
 Maximum dose 2,000 mL without medical consultation.
(2) Pediatric:
(a) KVO
(b) If age-related vital signs and patient’s condition indicate hypoperfusion, administer initial fluid bolus of 20 mL/kg LR IV/IO. Fluid boluses for neonates and volume-sensitive children are 10 mL/kg.
(c) If patient’s condition does not improve, administer the second fluid bolus of 20 mL/kg LR IV/IO.
(d) Third and subsequent fluid boluses at 20 mL/kg LR IV/IO with medical consultation.
23. LIDOCAINE (XYLOCAINE®)

a) Pharmacology
 (1) Anesthesia for IO infusions
 (2) Nasal anesthesia

b) Pharmacokinetics
 (1) Extremely rapid (within minutes) onset following IV administration and lasts approximately 10–20 minutes
 (2) Mucosal anesthesia with onset in 1–5 minutes

c) Indications
 (1) Anesthesia for IO infusions
 (2) Nasal tracheal intubation
 (3) Decrease intracranial pressure with Rapid Sequence Intubation

d) Contraindications
 (1) AV blocks
 (2) Sensitivity to lidocaine
 (3) Idioventricular escape rhythms
 (4) Accelerated idioventricular rhythm
 (5) Sinus bradycardia or arrest or block
 (6) Hypotension
 (7) Shock
 (8) Ventricular conduction defects

e) Adverse Effects
 (1) Lidocaine may cause clinical evidence of toxicity usually related to the central nervous system.
 (2) Toxicity:
 (a) Early: muscle twitching, slurred speech, altered mental status, decreased hearing, paresthesia (pins and needles), anxiety, apprehension, visual disturbances, nausea, numbness, difficulty breathing or swallowing, decreased heart rate
 (b) Late: convulsions, hypotension, coma, widening of QRS complex, prolongation of the P-R interval, hearing loss, hallucinations

f) Precautions
 (2) Reduce the dosage in patients with decreased cardiac output, liver dysfunction, and the elderly (age over 70).
g) **Dosage**

(1) Adult/Adolescent with an IO infusion: To prevent or treat pain during an IO infusion in patients greater than or equal to 13 years of age, administer 20–40 mg (1–2 mL) of 2% (preservative free) lidocaine IO.

(2) IO infusion in patients less than 13 years of age: To prevent or treat pain during an IO infusion for patients under 13 years of age, consult a Pediatric Base Station.

(3) Nasal Pharyngeal Anesthesia (age 13 years and greater)

Draw up 4 mL of lidocaine 4% (40 mg/mL) and using mucosal atomization device, administer 2 mL per nare. The patient IV, gel, and intranasal dosing should not exceed 3 mg/kg.

h) **Interfacility Transport Only**

(1) IV Infusion

(2) Maintain the IV infusion of lidocaine at the rate established by the sending physician and record vital signs every 15 minutes.

(See Lidocaine Infusion for Interfacility Transport.)
24. MAGNESIUM SULFATE

a) **Pharmacology**
Physiologic calcium channel blocker and also blocks neuromuscular transmission. Hypomagnesemia can cause cardiac dysrhythmias. It is also a CNS depressant effective in the management of seizures during pregnancy. It does this by decreasing the amount of acetylcholine liberated from motor nerve terminals. Magnesium is necessary for many biochemical processes and plays a role in the transmission of electrical impulses.

b) **Pharmacokinetics**
With intravenous administration the onset of anticonvulsant action is immediate and lasts about 30 minutes. Magnesium is excreted solely by the kidney at a rate proportional to the plasma concentration and glomerular filtration rate.

c) **Indications**
(1) Torsades de pointes
(2) Seizures with pregnancy
(3) Refractory VF and VT after amiodarone administration
(4) Moderate to severe asthma/bronchospasm exacerbation

d) **Contraindications**
(1) Heart blocks
(2) Renal impairment
(3) Hypermagnesemia

e) **Adverse Effects**
(1) Respiratory depression
(2) Flushing
(3) Sweating
(4) Hypotension
(5) Depressed reflexes

f) **Precautions**
(1) May exaggerate effects of CNS depressants and neuromuscular blocking agents
(2) Due to concern of hypotension, IV fluid bolus should be initiated if hypovolemia is suspected.
(3) Magnesium toxicity is a concern with higher doses and would present with respiratory depression, decreased reflexes, flaccid paralysis, and apnea. Calcium chloride 500 mg SLOW IVP for above indications of toxicity.
g) Dosage

(1) Adult:
 (a) Seizure activity associated with pregnancy: 4 grams IV/IO over 10 minutes (mixed in 50–100 mL of approved diluent)

 (b) Refractory VT/VF: 1–2 grams IV/IO over 2 minutes

 (c) Moderate to severe asthma/bronchospasm exacerbation: 1–2 grams IV/IO over 10–20 minutes (mixed in 50–100 mL of approved diluent)

 (d) Torsades de pointes: 1–2 grams IV/IO over 2 minutes

(2) Pediatric (under 18 years old):
 (a) Seizure activity associated with pregnancy: 4 grams IV/IO over 10 minutes (mixed in 50–100 mL of approved diluent)

 (b) Moderate to severe asthma/bronchospasm exacerbation: consider magnesium sulfate 50 mg/kg IV/IO (mixed in 50 - 100 mL of approved diluent) to max of 2 grams given over 10–20 minutes

MAGNESIUM ADMINISTRATION OFTEN CAUSES HYPOTENSION IN CHILDREN. CONSIDER ADMINISTERING BOLUS 20 ML/KG OF LACTATED RINGER’S WITH THE ADMINISTRATION OF MAGNESIUM.

 (c) Torsades de pointes: 25 mg/kg to a max of 2 grams IV/IO over 2 minutes

h) Interfacility Transport

(1) A paramedic may administer continuous infusion established by a sending facility, not to exceed the ordered total dose, and monitoring the patient for signs and symptoms of magnesium toxicity.

(2) Magnesium sulfate used for tocolytic control is an RN-level indication.
25. MIDAZOLAM (VERSED®)

a) Pharmacology
 (1) Sedative
 (2) Hypnotic
 (3) Anticonvulsant

b) Pharmacokinetics
 (1) A short-acting benzodiazepine with strong hypnotic, anticonvulsant activity, and amnestic properties
 (2) Onset of action is extremely rapid following IV administration; approximately 1.5 minutes, and for IM approximately 15 minutes.
 (3) Duration of effect is 1–4 hours with half-life of 1.5 to 3 hours in healthy adult.

c) Indications
 (1) Sustained and/or recurrent seizures
 (2) Precardioversion to reduce anxiety
 (3) Awake patient requiring transcutaneous pacing (TCP)
 (4) Nasal Tracheal Intubation
 (5) Implanted Cardioverter Defibrillator (ICD) Malfunction
 (6) Nerve/organophosphate exposure
 (7) Bucking Endotracheal Intubated patient
 (8) Chemical Restraint
 (9) Moderate to severe stimulant toxicity
 (10) Excited Delirium Syndrome

d) Contraindications
 (1) Hypotension (See below for ET bucking)
 (2) Known hypersensitivity to midazolam

e) Adverse Effects
 (1) Respiratory depression or apnea
 (2) Hypotension

f) Precautions
 (1) The effects of midazolam can be accentuated and significantly potentiated by CNS depressants, such as opioids or alcohol.
 (2) Midazolam is five times as potent per milligram as diazepam and there is an increased risk of respiratory depression.
g) **Dosage** (paramedic and CRT-(I) may perform without consult for patients with active seizures.)

All indications in c) above, except for Bucking Endotracheal Intubated patient, Chemical Restraint, and Excited Delirium Syndrome

1. Adult:

 REDUCE THE BELOW IV/OI/IN/IM BY 50% FOR PATIENTS 69 YEARS OR OLDER.

 (a) 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment with maximum single dose 5 mg.

 (b) If IV unavailable, 5 mg IN/IM may be administered.

 IN administration max 1 mL per nare

 (c) Additional doses up to a maximum total dose 10 mg require medical consultation for all clinicians.

 For seizures lasting greater than 10 minutes (status), consider IO administration of midazolam.

 (d) If suspected severe nerve agent exposure, clinicians may administer midazolam 5 mg IM without medical consultation.

2. Pediatric:

 (a) 0.1 mg/kg in 2 mg increments. SLOW IVP over 1–2 minutes per increment to a maximum single dose of 5 mg.

 (b) If IV unavailable, 0.2 mg/kg IN/IM

 IN administration max 1 mL per nare

 Maximum total dose 5 mg

 (c) Additional doses up to a maximum total dose 5 mg require medical consultation for all clinicians.

 For life-threatening conditions, consider IO administration of midazolam.

 (d) If suspected severe nerve agent exposure, clinicians may administer midazolam as above without medical consultation.

3. Chemical Restraint

 (a) Patient 18–69 years: midazolam 5 mg IM/IV

 Patient greater than 69 years: midazolam 2.5 mg IM/IV

 Repeat doses may be given with medical direction

 (b) Pediatric: Not indicated
(4) Bucking Endotracheal Intubated patient

(a) Adult: Administer 0.05 mg/kg SLOW IVP over 1–2 minutes, while maintaining systolic BP greater than 90 mmHg. STOP ONCE BUCKING HAS RESOLVED AND VENTILATION IS RELAXED. Maximum single dose is 5 mg.

Additional doses require medical consultation.

(b) Pediatric: Administer 0.05 mg/kg SLOW IVP over 1–2 minutes, while maintaining systolic BP greater than 60 in neonates, 70 in infants, [70 + (2 x years) = systolic BP] for patients greater than 1 year of age. Maximum total dose 5 mg.

ADMINISTER UP TO 0.05 MG/KG IV WHEN TREATING ENDOTRACHEAL TUBE BUCKING, STOPPING ONCE BUCKING HAS RESOLVED AND VENTILATION IS RELAXED.

(5) Excited Delirium Syndrome (ExDS)

(a) If severe agitation persists after second dose of IV/IO ketamine, consider midazolam 2.5 mg IV/IO.

(b) If IV/IO unavailable:

(i) If severe agitation persists after IM ketamine dose, administer midazolam 5 mg IM.

(c) Patients aged 13 to those who have not yet reached their 18th birthday:

(i) If severe agitation persists after second dose of IV/IO ketamine, consider midazolam 0.1 mg/kg SLOW IVP/IO over 1–2 minutes. Maximum single dose 2.5 mg.

(ii) If IV/IO unavailable:

a. If severe agitation persists after IM ketamine dose, administer midazolam 2.5 mg IM.
26. MORPHINE SULFATE

(Optional Supplemental Protocol, which allows for jurisdictional selection of both fentanyl and morphine OR replacement of fentanyl by morphine as the opioid of choice)

Pharmacology

(1) Decreases pain perception and anxiety
(2) Relaxes respiratory effort
(3) Causes peripheral dilation, which decreases preload
(4) Decreases left ventricular afterload

a) Pharmacokinetics

(1) Binds with opiate receptors in the CNS, altering both perception and emotional response to pain
(2) Onset of action is in less than 5 minutes after IV dose and effects last 4–5 hours.
(3) Causes peripheral arterial and venous vasodilation

b) Indications

(1) The patient reports moderate to severe pain.
(2) In the clinician’s judgment the patient will benefit from treatment with an opioid analgesic, including patients who are MOLST and/or EMS/DNR patients or being pre-medicated for a procedure.
(3) Pulmonary Edema/Congestive Heart Failure (Pediatric only)

c) Contraindications

(1) Hypersensitivity or known allergy to morphine
(2) Uncorrected respiratory distress or hypoxemia refractory to supplemental oxygen
(3) Uncorrected hypotension, defined as a persistent systolic pressure less than 90 mmHg

d) Adverse Effects

(1) Respiratory depression/arrest
(2) Altered mental status (decreased level of consciousness)
(3) Increased vagal tone due to suppression of sympathetic pathways (slowed heart rate)
(4) Nausea and vomiting
(5) Constricted pupils (pinpoint)
(6) Increased cerebral blood flow
e) Precautions
(1) Naloxone reverses all effects.
(2) Should be administered slowly and titrated to effect.
(3) Vital signs should be monitored frequently.
(4) Hypotension is a greater possibility in volume-depleted patients.

f) Dosage

(1) Adult: IV/IM
 (a) Administer 0.1 mg/kg to a maximum initial dose of 20 mg.
 (b) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of morphine 0.05 mg/kg to a maximum additional dose of 10 mg.
 (c) Obtain on-line medical direction for additional doses, if required.

(2) Pediatric: IV/IM
 (a) Administer 0.1 mg/kg to a maximum initial dose of 20 mg.
 (b) Reassess in 5–10 minutes. If pain remains moderate to severe, then administer a second dose of morphine 0.05 mg/kg to a maximum additional dose of 10 mg.
 (c) Obtain on-line medical direction for additional doses, if required.

(3) Pediatric Pulmonary Edema/CHF
 (a) 0.1 mg/kg SLOW IVP/IO/IM (1–2 mg/min).
 Maximum dose 5 mg.
27. NALOXONE (NARCAN®)

a) Pharmacology
Reverses all effects due to opioid (morphine-like) agents. This drug will reverse the respiratory depression and all central and peripheral nervous system effects.

b) Pharmacokinetics
(1) Onset of action is within a few minutes if administered IVP and within 5 minutes if administered IN.
(2) Intramuscular and pediatric/neonatal endotracheal administration results in a slower onset of action.
(3) Patients responding to naloxone may require additional doses and transportation to the hospital since most opioids last longer than naloxone.
(4) Has no effect in the absence of opioids

c) Indications
To reverse respiratory depression induced by opioids

d) Contraindications
Patients under 28 days of age.

e) Adverse Effects
Opioid withdrawal

f) Precautions
(1) Naloxone may induce opioid withdrawal in patients who are physically dependent.
(2) Certain drugs may require much higher doses of naloxone for reversal than are currently used.
(3) Should be administered and titrated so respiratory efforts return, but not intended to restore full consciousness

g) Dosage
(1) Adult: Administer 0.4–2 mg IVP/IO (titrated)/IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare. Repeat as necessary to maintain respiratory activity.
(2) Pediatric: Administer 0.1 mg/kg IVP/IO (titrated)IM/IN (if delivery device is available, divide administration of the dose equally between the nares to a maximum of 1 mL per nare); OR administer 4 mg/0.1 mL IN in one nare. May be repeated as necessary to maintain respiratory activity. ET dose: 0.2–0.25 mg/kg
28. NITROGLYCERIN

a) Pharmacology
 (1) Vasodilator-effect on veins more than arteries
 (2) Decreases right heart return (preload) by venous pooling, thereby decreasing myocardial workload and oxygen consumption

b) Pharmacokinetics
 (1) Absorbed through oral mucosa
 (2) Antianginal and vasodilation effects within 1–2 minutes after administration. Half-life is 1–4 minutes.
 (3) Duration of action is less than 5 minutes.

c) Indications
 (1) For treatment of angina
 (2) Congestive heart failure, acute pulmonary edema

d) Contraindications
 (1) Known hypersensitivity
 (2) Pediatric patient under the age of 13
 (3) Any patient having taken medication for Pulmonary Artery Hypertension (e.g., Adcirca® or Revatio®) or erectile dysfunction (e.g., Viagra®, Levitra®, or Cialis®) within the past 48 hours. Medical consultation is required to override this contraindication.
 (4) Asymptomatic hypertension
 (5) Blood pressure below 90 mmHg systolic
 (6) Heart rate less than 60

e) Adverse Effects
 Headache, hypotension, nausea, vomiting, dizziness, and decreased level of consciousness

f) Precautions
 May cause hypotension

g) Dosage
 (1) Adult: Chest pain
 (a) If patient has a prescription or previous history of nitroglycerin use, administer nitroglycerin: 0.4 mg SL (may repeat dose 2 times at 3–5 minute intervals)
 May be repeated if symptoms persist, BP is greater than 90 mmHg, and pulse is greater than 60 bpm, to a maximum dose of 1.2 mg
 (b) If patient does not have a prescription or previous history of nitroglycerin use, establish IV prior to the administration of nitroglycerin, then administer nitroglycerin as above.
 (c) Additional doses may be administered with medical consultation.
(2) Adult: Pulmonary Edema/Congestive Heart Failure
 (a) Low dose - Administer 0.4 mg SL at 3–5 minute intervals to a maximum dose of 1.2 mg.
 (b) High dose - (until CPAP is applied or if CPAP is not tolerated)
 (i) Administer 1 dose of 0.4 mg SL and apply 1 inch of NTG paste.
 (ii) Administer 1 dose of 0.8 mg SL.
 (iii) Continue 0.8 mg NTG dosing to achieve a 20% reduction in systolic blood pressure.

(3) Pediatric: Requires medical consultation from Pediatric Base Station.
29. NITROGLYCERIN PASTE

a) Pharmacology
 Nitroglycerin paste contains a 2% solution of nitroglycerin in a special absorbent paste. When placed on the skin, nitroglycerin is absorbed into the systemic circulation. In many cases, it may be preferred over nitroglycerin tablets because of its longer duration of action.

b) Pharmacokinetics
 Nitroglycerin is a rapid smooth-muscle relaxant that reduces cardiac work and, to a lesser degree, dilates the coronary arteries. This results in increased coronary blood flow and improved perfusion of the ischemic myocardium. Relief of ischemia causes reduction and alleviation of chest pain. Pain relief following transcutaneous nitroglycerin administration usually occurs within 5 to 10 minutes, and therapeutic effects can be observed up to 30 minutes later. Nitroglycerin also causes vasodilation, which decreases preload. Decreased preload leads to decreased cardiac work. This feature, in conjunction with coronary vasodilation, reverses the effects of angina pectoris.

c) Indications
 Patients in respiratory distress with moderate or severe symptoms and elevated systolic blood pressure.

d) Contraindications
 (1) Known hypersensitivity
 (2) Pediatric patient under the age of 13
 (3) Any patient having taken medication for Pulmonary Artery Hypertension (e.g., Adcirca® or Revatio®) or erectile dysfunction (e.g., Viagra®, Levitra®, or Cialis®) within the past 48 hours. Medical consultation is required to override this contraindication.
 (4) Asymptomatic hypertension
 (5) Blood pressure below 90 mmHg systolic
 (6) Heart rate less than 60

e) Adverse Effects
 Headache, dizziness, weakness, tachycardia, hypotension, orthostasis, skin rash, dry mouth, nausea, and vomiting.

f) Precautions
 Patients taking the drug routinely may develop a tolerance and require an increased dose. Headache is a common side effect of nitroglycerin administration and occurs as a result of vasodilation of the cerebral vessels. Postural syncope sometimes occurs following the administration of nitroglycerin. This should be anticipated and the patient kept supine when possible. It is important to monitor the blood pressure continuously.

g) Dosage
 (1) Adult: 1 inch of the NTG paste is applied. Measuring applicators are supplied.
 (2) Pediatric: Requires medical consultation from Pediatric Base Station.
30. ONDANSETRON (ZOFRAN®)

a) Pharmacology
A selective blocking agent of the serotonin 5-HT3 receptor type

b) Pharmacokinetics
Anti-nausea and anti-emetic with onset of action within 5–15 minutes IV and 30 minutes IM

c) Indications
(1) Prevention and control of nausea and/or vomiting
(2) Ondansetron can be administered in an effort to reduce the nausea or vomiting complications associated with certain existing injuries, medical illness, or medication side effects (e.g., penetrating eye injury, high risk for aspiration, or following opioid administration).

d) Contraindications
Known hypersensitivity to ondansetron
Patients less than 28 days

e) Adverse Effects
(1) Hypotension
(2) Tachycardia
(3) Extrapyramidal reactions
(4) Seizures
(5) QT interval prolongation

f) Precautions
(1) Monitor EKG, pulse oximetry, and blood pressure.
(2) Have emesis basin and suction ready.

g) Dosage
(1) Adult: 8 mg SLOW IV over 2–5 minutes OR 4-8 mg IM OR 8 mg orally disintegrating tablet (ODT)
May repeat once without medical consultation.
For third repeat dose to a patient with maximum total dose of 24 mg.

(2) Pediatric:
Patients 28 days to 12 years old: 0.1 mg/kg SLOW IV over 2–5 minutes
Patients who are 13 to 18 years old: 8 mg ODT OR 8 mg SLOW IV over 2–5 minutes
OR
If no IV: 0.1 mg/kg IM (with max single dose of 8 mg);
May repeat once without medical consultation.
For third repeat dose to a patient with maximum total dose of 0.3 mg/kg or 24 mg, whichever is lower.
31. OXYGEN

a) Pharmacology
 (1) Increases oxygen content of the blood
 (2) Improves tissue oxygenation
 (3) Decreases energy expended for respirations

b) Pharmacokinetics
 Changing the percentage of inspired oxygen results in an increased blood and
 tissue level equilibration within 5–20 minutes.

c) Indications
 (1) If evidence of hypoxia (Less than 94% SpO₂)
 (2) Respiratory distress
 (3) Cardiopulmonary arrest
 (4) Trauma
 (5) Suspected CO exposure
 (6) Dyspnea

d) Contraindications
 Not clinically significant

e) Adverse Effects
 High concentrations of oxygen will reduce the respiratory drive in some COPD
 patients; these patients should be carefully monitored.

f) Precautions
 (1) Never withhold oxygen from those who need it.
 (2) Oxygen should be given with caution to patients with COPD.
 (3) Simple or partial rebreather face masks must be supplied with a minimum 6 lpm.
 (4) Non-breather (NRB) face masks must be supplied with a minimum 12 lpm.

g) Dosage
 (1) Adult: Administer 12–15 lpm via NRB mask or 2–6 lpm via nasal cannula, as need-
 ed. CO exposure: Administer 100% oxygen via NRB mask. Maintain SpO₂ at 100%
 (2) Pediatric: Administer 12–15 lpm via NRB mask or 2–6 lpm via nasal cannula, as
 needed. CO exposure: Administer 100% oxygen via NRB mask. Maintain SpO₂
 at 100%

<table>
<thead>
<tr>
<th>Percent O₂ Saturation</th>
<th>Ranges</th>
<th>General Patient Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>94–100%</td>
<td>Normal</td>
<td>Give oxygen as necessary</td>
</tr>
<tr>
<td>91–93%</td>
<td>Mild Hypoxia</td>
<td>Give oxygen as necessary</td>
</tr>
<tr>
<td>86–90%</td>
<td>Moderate Hypoxia</td>
<td>Give 100% oxygen Assisting Ventilations if necessary</td>
</tr>
<tr>
<td>less than or equal to 85%</td>
<td>Severe Hypoxia</td>
<td>Give 100% oxygen Assist Ventilations If indicated, Intubate</td>
</tr>
</tbody>
</table>

INACCURATE OR MISLEADING SpO₂ READINGS MAY OCCUR IN THE FOLLOWING
PATIENTS: HYPOTHERMIC, HYPOPERFUSION (SHOCK), CO POISONING,
HEMOGLOBIN ABNORMALITY, ANEMIA, AND VASOCONSTRICTION.
32. SODIUM BICARBONATE

a) Pharmacology
 Sodium bicarbonate corrects acidosis.

b) Pharmacokinetics
 (1) Rapid onset of action in the blood
 (2) Delayed onset of action in the tissues

c) Indications
 (1) Used in cardiac arrest only after more definitive treatments
 (2) Hyperkalemia
 (3) Tricyclic and phenobarbital overdose
 (4) Pretreatment for patients with decreased renal function who will be receiving IV contrast dye

d) Contraindications
 Preexisting alkalosis

e) Adverse Effects
 (1) Worsened intracellular acidosis due to carbon dioxide formation
 (2) Hyperosmolality
 (3) May precipitate congestive heart failure
 (4) Metabolic alkalosis
 (5) Acute hypokalemia
 (6) Exacerbation of central venous acidosis
 (7) Shifting the oxyhemoglobin dissociation curve, inhibiting the release of oxygen to the tissues

f) Precautions
 (1) Inactivates simultaneously-administered catecholamines
 (2) Priorities before use:
 (a) Intubation
 (b) Hyperventilation
 (c) Defibrillation
 (d) Epinephrine
 (e) Antiarrhythmics

g) Dosage
 (1) Should only be given after airway has been secured and ventilations achieved
 (2) Adult: Administer 1 mEq/kg IVP bolus initially with 0.5 mEq/kg at 10-minute intervals.
 (3) Pediatric: Administer 1 mEq/kg IVP/IO; for patients less than 1 year of age, must be diluted (1:1) with LR.
(4) Hyperkalemia
(Reserve for patients with suspected CRUSH SYNDROME or patients with functional kidneys by history.)

FLUSH IV WITH 5 ML OF LR BETWEEN CALCIUM AND BICARBONATE ADMINISTRATION.

(a) Adult:
Consider sodium bicarbonate 50 mEq SLOW over 5 minutes and then initiate drip of sodium bicarbonate 100 mEq in 1,000 mL LR to run over 30–60 minutes.

(b) Pediatric:
Consider sodium bicarbonate 1 mEq/kg IV over 5 minutes. For patients less than 1 year of age, must be diluted 1:1 with LR.

(5) IV drip for diuresis prior to receiving IV contrast dye:
Continue the sodium bicarbonate drip at the rate ordered by the sending physician. Document the base solution and the amount of sodium bicarbonate that was added to the solution and the total volume infused.

Do not administer IVP medications through the same IV line as the bicarbonate drip unless compatibility has been established. Flush the line well before and after giving any IVP medication.
33. TERBUTALINE (JURISDICTIONAL OPTION ONLY WHEN APPROVED BY STATE
EMS MEDICAL DIRECTOR – NEW ’20)

a) Pharmacology
 (1) Stimulates beta-2 receptors located in the smooth bronchioles
 (2) Causes relaxation of bronchospasm

b) Pharmacokinetics
 Relieves bronchospasm in acute and chronic airway disease with minimal
 cardiovascular effect

c) Indications
 (1) Asthma
 (2) Reversible airway obstruction associated with bronchitis or emphysema

d) Contraindications
 (1) Patients under 12 years of age

e) Adverse Effects
 (1) Tachycardia
 (2) Palpitations
 (3) Nervousness
 (4) Tremors
 (5) Dizziness
 (6) Nausea
 (7) Vomiting

f) Precautions
 (1) Exercise caution when administering to patients with hypertension or cardiac
 history
 (2) Monitor EKG

g) Dosage
 (1) Patients 12 years of age and older:
 Administer 0.25 mg IM. May repeat one time after 15 minutes if there is not
 adequate improvement. Maximum total dose 0.5 mg IM.
 (2) Patients less than 12 years of age: Not indicated
34. VERAPAMIL (ISOPTIN®)
 (CRT-I & Paramedic only)

Jurisdictional option only when approved by the State EMS Medical Director. Administration of verapamil requires medical consultation.

a) **Pharmacology**
 Calcium channel blocker

b) **Pharmacokinetics**
 (1) Inhibits the movement of calcium ions across cardiac muscle cells
 (2) Decreases conduction velocity and ventricular rate

c) **Indications**
 (1) Narrow complex symptomatic atrial fibrillation or atrial flutter

d) **Contraindications**
 (1) Hypotension below 100 mmHg, second or third degree heart block, hypersensitivity to the drug
 (2) Patient with history of Wolff-Parkinson-White syndrome
 (3) Ventricular tachycardia
 (4) Patients less than 18 years of age

e) **Precautions**
 Use cautiously in patients with renal failure, congestive heart failure, or on beta blockers.

f) **Adverse Effects**
 (1) Hypotension (see Treatment of Overdose or Other Adverse Reactions)
 (2) Bradycardia
 (3) Vomiting
 (4) Nausea
 (5) Headache

g) **Significant Interactions**
 Congestive heart failure may result if used along with beta blockers.

h) **Dosage**
 (1) Adult:
 a) 2.5–10 mg slow IV over 2 minutes; if response is not adequate, repeat in 15 minutes with a dosage of 2.5–10 mg slow IV over 2 minutes with medical consultation.
 (2) Pediatric:
 Contraindicated for patients less than 18 years of age.
i) **Overdose or Toxicity Presentation**
 Generally consists of exaggeration of side effects, including severe hypotension and symptomatic bradycardia

j) **Treatment of Overdose or Other Adverse Reactions**
 1. Give general supportive measures, monitor vitals, administer oxygen.
 2. Hypotension:
 a) If lungs are clear, administer fluid bolus 20 mL/kg of LR; titrate to a systolic blood pressure of 100 mmHg.
 b) If rales are present, administer fluid bolus, maximum of 250 mL of LR. Titrate to a systolic of 100 mmHg.
 c) Administer calcium chloride 500 mg SLOW IVP.
 3. Bradycardia: Consider atropine (0.5 to 1 mg); if necessary, consider pacing.
E. PROCEEDURES

1. ACCESSING CENTRAL VENOUS CATHETERS AND DEVICES

a) PURPOSE
Accessing a preexisting central venous catheter or device may be required for fluid volume resuscitation and/or medication administration for critically ill/injured patients when peripheral IV access cannot be established.

b) INDICATIONS
Life-Threatening Emergency
A preexisting central venous access catheter or device may be accessed by a paramedic for resuscitation medication administration or fluid volume administration.

A CRT-I may access these devices WITH MEDICAL CONSULTATION.

Non–Life-Threatening Emergency
Medical consultation is required for all ALS (CRT-I and paramedic) clinicians.

c) CONTRAINDICATIONS
None

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
(1) Infection (local site and in the central bloodstream)
(2) Air in the catheter line (air embolism)
(3) Damage to catheter line
(4) Obstruction in the line
(5) Dislodge the catheter

e) PROCEDURE: PORTS (e.g., Port-a-Cath®, Mediport®, Bard®, Infuse-a-Port®)
A port (reservoir) is a disc about an inch in diameter that is just under the skin, usually on the upper chest. Under the skin, it is connected to a catheter line that lies in a large vein just above the heart.

(1) Explain the procedure to the patient whenever possible.
(2) Obtain assistance as needed.
(3) Position the patient supine.
(4) Using a 10 mL syringe or larger, draw up TWO 5 mL flushes with NS/RL.
 NOTE: 10 mL syringes are used because they have lower pressure when flushing fluids than smaller volume syringes (1 mL, 3 mL, or 5 mL). The smaller volume syringes may deliver enough pressure to break the catheter.
(5) Open the right-angle, non-coring (Huber® or Gripper®) needle package and flush with NS/RL. Be sure there are no air bubbles in the tubing.
(6) Clean the skin site at the port with cleaning material from patient/family, or use alcohol or other approved antibacterial agent (e.g., ChloraPrep®), using a circular motion.
(7) Use sterile latex-safe gloves. Using the non-dominant hand, palpate the area over the port to stabilize the port and locate the center.

(8) With other hand, insert the non-coring needle into the center of the port with firm, steady pressure until you feel the needle reach the back of the port. Do not rock the non-coring needle back and forth in the port.

(9) Aspirate 5 mL of blood and/or heparinized solution and discard. If unable to aspirate blood, verify needle position by gently pushing the needle farther against the backstop of the port.

If you are still unable to aspirate blood or fluid, contact MEDICAL CONSULTATION prior to use.

(10) Flush with 5 mL NS/RL while assessing for swelling at the site. **Be sure there are no air bubbles in the syringe or tubing.** Do not force flush if resistance is met. Verify the non-coring needle position by gently pushing the needle further against the backstop of the port, and attempt to flush again.

(11) After assessing patency, clamp the tubing, and remove the syringe.

(12) Apply needleless injection cap, if available, and cleanse with alcohol.

(13) IV fluids, tubing, and connectors must be assembled and primed in the cleanest area possible with **all air eliminated** prior to connecting to the patient.

(14) Attach the completely flushed IV line, unclamp the needle tubing, and begin infusion of fluid/medication. NOTE: IV fluids may not infuse by gravity.

(15) Secure the non-coring needle with sterile 2x2 or 4x4 and tape or occlusive dressing, being careful not to tape over the insertion site.

(16) Tape or loop extension tubing to outside of dressing.

f) PROCEDURE: TUNNELED AND NON-TUNNELED LINES

TUNNELED LINES (e.g., Hickman®, Groshong®, Broviac®, Cook®)
A tunneled central line is a catheter that is inserted under the skin of the chest, and the tip of the catheter is in a large vein just above the heart. A tunneled catheter has a cuff below the skin that the soft tissue grows into, reducing the risk of dislodgement and infection. These can be single or multiple-lumen catheters.

NON-TUNNELED LINES: PICC and MLC (e.g., Cook®, Neo-PICC®)
A PICC (Peripherally Inserted Central Catheter) line is a thin catheter that is inserted into one of the large veins, usually in the arm near the bend of the elbow, but may be in the neck or a lower extremity, and is threaded in a large vein just above the heart. A MLC (Mid-Line Catheter) is a thin peripheral catheter that is inserted into a large vein in the elbow and ends in the vein before the shoulder. Both of these catheters have a very small lumen and are considered “low volume lines” and not appropriate for volume resuscitation.
(1) Explain the procedure to the patient whenever possible.
(2) Obtain assistance as needed.
(3) Position the patient supine.
(4) Using a 10 mL syringe or larger, draw up 5 mL flushes with NS/RL. **Be sure there are no air bubbles in the syringe.** Attach a stopcock if available.
NOTE: 10 mL syringes are used because they have lower pressure when flushing fluids than smaller volume syringes (1 mL, 3 mL, or 5 mL). The smaller volume syringes may deliver enough pressure to break the catheter.
(5) Use sterile latex-safe gloves.
(6) If multiple lumens or ports, determine from patient/family which catheter is most appropriate for use, if possible, or refer to the EIF Form. This is usually the **white** port.
(7) Clean the existing cap on catheter with alcohol for 30 seconds.
(8) Clamp all lines with special clamps that do not have teeth, which might damage the catheter.
(9) Access the appropriate catheter port with a 10 mL syringe.
(10) Unclamp the catheter line to be accessed and aspirate 5 mL of blood/heparinized solution and discard to confirm placement and access patency. Delete this step if less than 2 Fr PICC catheter, as this may damage the catheter (the lumen is very small and the catheter wall may collapse and any blood in the catheter will form a clot).
NOTE: Contact MEDICAL CONSULTATION if unable to aspirate blood/fluid, or less than 2 Fr catheter.
(11) Reclamp the catheter any time you are changing lines or syringes. Remember that regular clamps may damage the central line tubing.
(12) Attach the flush syringe and unclamp.
(13) Flush with 5 mL NS/RL. **Be sure there are no air bubbles in the syringe or tubing.**
(14) Clamp this line again with the special clamp.
2. AIRWAY MANAGEMENT: BAG-VALVE-MASK VENTILATION

a) PURPOSE

(1) Bag-valve-mask (BVM) ventilation is the technique of providing rescue breathing for patients with inadequate respiratory effort or cardiac arrest. Patients in respiratory failure may respond to BVM ventilation and not require endotracheal intubation.

(2) A BVM may also be used to administer inhaled medications for patients with severe respiratory failure.

b) INDICATIONS

(1) Inadequate respiratory rate
 (a) Adult: less than 8
 (b) Adolescent (13–18 years of age): less than 12
 (c) Child (1–12 years of age): less than 16
 (d) Infant/Toddler (less than 1 year of age): less than 20

(2) Inadequate respiratory effort
 (a) Absent or diminished breath sounds
 (b) Paradoxical breathing (chest and abdomen moving in opposite directions)
 (c) Cyanosis or oxygen saturation less than 90% on 100% oxygen by nonrebreather with the exception of patients with chronic hypoxemia

(3) Symptomatic Bradycardia
 (a) Adult/Adolescent (greater than 13 years of age): Heart rate less than 60
 (b) Child (1–12 years of age): Heart rate less than 80
 (c) Infant (less than 1 year of age): Heart rate less than 100

(4) Cardiac arrest
(5) Altered mental status
 Glasgow Coma Scale of 8 or less

c) CONTRAINDICATIONS

None

d) POTENTIAL ADVERSE EFFECTS / COMPLICATIONS

(1) Gastric distension
(2) Vomiting
(3) Increased intracranial pressure as a result of increased vagal stimulation if mask applied over the patient’s eyes
e) PRECAUTIONS

(1) Have suction available since vomiting may occur.
(2) Use an appropriate size airway adjunct with BVM.
(3) Use an appropriate size mask to avoid pressure over the eyes (pediatric patient), which may cause vagal stimulation.
(4) For single clinician BVM use the “E-C clamp” technique to achieve an adequate seal and avoid pressure on the soft tissues of the face or neck: Place the third, fourth, and fifth fingers along the jaw to provide a chin lift (forming an E); use the thumb and index finger to hold the mask on the child’s face (forming a C).
(5) If the patient does not have adequate chest rise and breath sounds with BVM, consider the following interventions:
 (a) Use 2-hand jaw lift and oral airway to relieve tongue obstruction.
 (b) Use a larger bag to increase the volume of air delivered into the patient.
 (c) Evaluate and treat the patient for gastric distension.
 Clinicians may manually decompress the stomach and/or open an existing gastric tube or button and/or place NG or OG tube.

f) SUGGESTED SIZES FOR RESUSCITATION MASKS

<table>
<thead>
<tr>
<th>Age</th>
<th>Mask Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature infants</td>
<td>Neonatal</td>
</tr>
<tr>
<td>Newborn to 1 year</td>
<td>Infant</td>
</tr>
<tr>
<td>1–4 years</td>
<td>Toddler</td>
</tr>
<tr>
<td>5–12 years</td>
<td>Pediatric</td>
</tr>
<tr>
<td>Greater than 13 years of age</td>
<td>Small adult</td>
</tr>
<tr>
<td>Adult</td>
<td>Adult</td>
</tr>
</tbody>
</table>

g) SUGGESTED SIZES FOR RESUSCITATION BAGS

<table>
<thead>
<tr>
<th>Age</th>
<th>Bag Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant to less than 1 year of age</td>
<td>Infant (450–500 mL)</td>
</tr>
<tr>
<td>Child 1-12 years</td>
<td>Pediatric (750 mL)</td>
</tr>
<tr>
<td>Adolescent/Adult</td>
<td>Adult (1,000–1,200 mL)</td>
</tr>
</tbody>
</table>
3. AIRWAY MANAGEMENT: CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP)

a) INDICATIONS

(1) Respiratory distress or failure, due to cardiogenic pulmonary edema or COPD/asthma, in which the patient demonstrates spontaneous respirations and a patent, self-maintained airway
(2) Patients who are 13 years of age or older
(3) Exception: EMT may transport a patient who is chronically on CPAP who is going for routine medical care and has in attendance a patient provided attendant who can manage the patient’s own CPAP.

CLINICIAN MUST ASSURE THAT THE CPAP MASK FITS THE PATIENT APPROPRIATELY.

b) CONTRAINDICATIONS (NEW ’20)

(1) Circumstances in which endotracheal intubation or a surgical airway is indicated to secure a patient airway
(2) Facial deformity or trauma which prevents the use of the device
(3) Patient has significantly decreased level of consciousness or an inability to protect their airway
(4) Patient has a tracheostomy
(5) Patient is vomiting
(6) Circumstances in which the patient does not improve or continues to deteriorate despite CPAP administration
(7) Known intolerance for noninvasive airway procedures (CPAP)

c) PROCEDURE

(1) Assure patent airway.
(2) Administer 100% O₂ via appropriate delivery system.
(3) Perform appropriate patient assessment, including obtaining vital signs, pulse oximeter (SpO₂) reading, and cardiac rhythm.
(4) Apply CPAP device per manufacturer’s instructions.
(5) Continuously reassess the patient.
(6) Monitor continuous pulse oximetry.
(7) Monitor continuous ETCO₂ with nasal prongs (if available).
(8) Follow the appropriate set of standing orders for continued treatment.
(9) Contact the medical control as soon as possible to allow for prompt availability of hospital CPAP equipment and respiratory personnel.

FOR CIRCUMSTANCES IN WHICH THE PATIENT DOES NOT IMPROVE OR CONTINUES TO DETERIORATE DESPITE CPAP AND/OR MEDICATIVE THERAPY, TERMINATE CPAP ADMINISTRATION AND PERFORM BVM VENTILATION AND ENDOTRACHEAL INTUBATION IF NECESSARY.

CPAP MAY BE CONSIDERED FOR NON-CARDIOGENIC PULMONARY EDEMA.
4. AIRWAY MANAGEMENT: LARYNGEAL TUBE AIRWAY DEVICE (KING LTS-D™)

a) PURPOSE
To provide an alternative means of ventilating patients who cannot be intubated via laryngoscopy.

b) INDICATIONS
Inability to place an endotracheal tube in a patient who has no gag reflex (including patients who cannot be intubated following the administration of succinylcholine).

c) CONTRAINDICATIONS
(1) Responsive patients with an intact gag reflex
(2) Lack of an appropriately-sized device
(3) Known esophageal disease or ingestion of caustic substances

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
(1) The LTS-D airway does not protect against the effects of regurgitation and aspiration.
(2) High airway pressures may divert gas either to the stomach or to the atmosphere.
(3) Intubation of the trachea cannot be ruled out as a potential complication of the insertion of the LTS-D airway. After placement, perform standard checks for breath sounds and utilize an appropriate carbon dioxide monitor.

e) PROCEDURE
(1) Inspect all components of the LTS-D for visible damage.
(2) Select appropriately sized LTS-D airway as specified by manufacturer.
(3) Test cuffs by injecting the maximum volume of air (by size) as specified by manufacturer and lubricate with water soluble jelly.
(4) Maintain cervical immobilization (if indicated) and lift tongue and jaw upward with one hand. Ideal position of the head is in the “sniffing position”; however, the LTS-D airway can be inserted with the head in neutral position.
(5) Insert LTS-D airway using a lateral approach and advance the tip behind the base of the tongue while rotating the tube back to midline so the blue line faces the patient’s chin.
(6) Without exerting excessive force, advance tube until base of connector is aligned with teeth and gums.
(7) Inflate cuff and ventilate patient. Gently withdraw the tube until ventilation becomes easy and free-flowing.
(8) Adjust cuff inflation to obtain a seal of the airway.
(9) Ventilate and evaluate lung ventilation (breath sounds, absence of gastric sounds, chest rise, ETCO₂, oxygen saturation).
(10) Once effective ventilation is confirmed, continue to monitor oxygen saturation and ventilate to desired ETCO₂ level.
(11) If unable to achieve adequate ventilation using LTS-D airway, remove device, reinset, and attempt again. If unable to ventilate, reattempt bag-valve-mask ventilation and consider obstructed airway maneuvers.
5. AIRWAY MANAGEMENT: GASTRIC TUBE FOR DECOMPRESSION

a) PURPOSE

A naso/orogastric tube is passed to relieve the gastric distension or pressure in an effort to reduce the risk of aspiration and increase the intrathoracic volume.

b) INDICATIONS

(1) All pediatric intubated patients
(2) Pediatric patients with gastric distension complicating Bag Valve Mask Ventilation (NEW ’20)
(3) Intubated adult patients exhibiting signs and symptoms of gastric distension that compromise ventilation or circulation

(c) CONTRAINDICATIONS

(1) History of esophageal varices
(2) Esophageal or gastric surgery within the past 6 weeks
(3) Anatomical deformity complicating nasal passage of the tube (nasogastric)
(4) Suspected basilar skull fracture

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Tracheal intubation with gastric tube
(2) Epistaxis
(3) Coiling or knotting of tube in the stomach or esophagus
(4) Trauma to the nose, esophagus, or stomach
(5) Triggering vomiting
(6) Intracranial placement of gastric tube in patients with unidentified skull fractures

e) PRECAUTIONS

Have suction available since vomiting may be induced.
6. AIRWAY MANAGEMENT: NASOTRACHEAL INTUBATION

a) PURPOSE

Nasal intubation is the technique of passing an endotracheal tube through the nose and pharynx into the trachea. This is done without using a laryngoscope to visualize the vocal cords (blind technique). The procedure is limited to breathing patients in whom oral intubation is difficult.

b) INDICATIONS

(1) Use is primarily for hypoxemic CHF and COPD patients and is allowed for closed head injury patients with clenched teeth
(2) An oxygen saturation of less than or equal to 90% in a patient on 100% oxygen by face mask and respiratory distress
(3) A respiratory rate of 8 or less per minute or 35 or greater per minute
(4) A Glasgow Coma Score of 8 or less, or
(5) Loss of gag reflex

c) CONTRAINDICATIONS

(1) Patient receiving anticoagulants, such as Coumadin (warfarin)
(2) Patient with upper airway hemorrhage, significant mid-facial trauma, or laryngeal trauma
(3) Patient with cerebral spinal fluid leakage or evidence of basilar skull fracture

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Epistaxis
(2) Intubation of the esophagus
(3) Trauma to the oral pharynx, vocal cords, esophagus, or trachea
(4) Right mainstem bronchus intubation
(5) Vomiting
(6) Increased intracranial pressure, as result of increased vagal stimulation
(7) Pneumothorax/tension pneumothorax from high pressure ventilation or underlying preexisting trauma
(8) Intracranial tube placement through basal skull fracture

e) PRECAUTIONS

(1) Topical anesthesia (lidocaine 4% spray or gel) should be applied to both nares to minimize discomfort.

(2) Confirmation of ET placement
 (a) Utilization of the Beck Airway Airflow Monitor (BAAM) device when available
 (b) Auscultation of all lung fields to confirm air exchange
 (c) Auscultation of the epigastrium to deny disturbance of gastric fluids upon ventilation
 (d) Observation of bilateral expansion of the thorax
 (e) ETCO$_2$ detection device required. At a minimum, use colorimetric devices.
 (f) The esophageal detection device
 (g) Documentation of tube depth at the nares
 (h) Other clinical signs of improved perfusion and ventilation (e.g., pupillary response, skin color, etc.)

(3) Nasal intubation may require facilitation with sedation. When hypovolemia is unlikely and hypotension is not present, morphine/fentanyl or midazolam, or a combination of both, may be given by direct medical consultation to achieve mild sedation.
7. AIRWAY MANAGEMENT: NEEDLE DECOMPRESSION THORACOSTOMY (NDT)

a) PURPOSE
Needle Decompression Thoracostomy is the procedure of introducing a needle/catheter with a minimum length of 3.25 inches and a minimum diameter of 14 gauge (with optional add-on flutter valve attached) into the pleural space of the chest to provide temporary relief for the patient suffering from a tension pneumothorax.

b) INDICATIONS
(1) Patients who are assessed to have a life-threatening tension pneumothorax in extremis with absent lung sounds AND clear evidence of hemodynamic compromise to include hypotension (systolic blood pressure less than 100 mmHg), and/or arrest
(2) If traumatic arrest is suspected due to multi-system blunt trauma, or due to penetrating neck, chest, or abdominal trauma, bilateral needle decompression should be performed. Once catheters are placed, do not remove.
(3) Allowable site: (NEW '20)
 (a) Adults and children 15 years of age and older:
 (i) Fifth (5th) intercostal space, anterior axillary line
 (ii) If fifth (5th) intercostal space site is not available, use second (2nd) intercostal space at the mid-clavicular line on the anterior chest wall
 (b) Children under 15 years of age:
 (i) Use the second (2nd) intercostal space, at the mid-clavicular line on anterior chest wall

c) CONTRAINDICATIONS
Patients whose tension pneumothorax can be relieved by the removal of an occlusive dressing from an open chest wound

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
(1) Intercostal vascular or nerve injury
(2) Pneumo/hemothorax
(3) Direct damage to the lung
(4) Pericardial/cardiac injury
(5) Infection

e) PRECAUTIONS
(1) Reassessment of catheter patency
(2) Second decompression may need to be performed if reaccumulation, catheter occlusion, or dislocation is evident.
8. OBSTRUCTED AIRWAY FOREIGN BODY REMOVAL: DIRECT LARYNGOSCOPY

a) PURPOSE

The attempted correction of a foreign-body airway obstruction through direct laryngoscopy should be accomplished only by a Maryland licensed CRT-(I) or paramedic. This is accomplished after the ALS clinician has determined (by noting repeated unsuccessful attempts at dislodging the object by applying the standard basic method of foreign body removal by BLS clinicians or the ALS clinician) that the object cannot be dislodged by these means. The patient must be unconscious and supine before this method is attempted.

b) INDICATIONS

Patient must be unconscious due to foreign body upper airway obstruction that has not resolved with standard basic methods for foreign body removal.

c) CONTRAINDICATIONS

None

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

Trauma to the oral pharynx, vocal cords, esophagus, or trachea

e) PRECAUTIONS

It is important to distinguish the foreign body from portions of the patient’s anatomy.
9. AIRWAY MANAGEMENT: OROTRACHEAL INTUBATION

a) PURPOSE

(1) Endotracheal intubation involves the passage of an endotracheal tube with direct visualization or digital manipulation through the larynx and into the trachea to provide direct maximum ventilatory support for a patient.

(2) Blind digital intubation is accomplished without the laryngoscope.

b) INDICATIONS

(1) Cardiac arrest
(2) Respiratory arrest, patient without gag reflex
(3) Deep coma, patient without gag reflex
(4) Patient in extremis, in severe respiratory distress with extremely poor air exchange, or agonal respirations (gag reflex may be present)

c) CONTRAINDICATIONS

Upper airway obstruction due to foreign objects

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Intubation of the esophagus
(2) Trauma to the oral pharynx, vocal cords, esophagus, or trachea
(3) Right mainstem bronchus intubation
(4) Vomiting
(5) Increased intracranial pressure as a result of increased vagal stimulation
(6) Pneumothorax/tension pneumothorax from high pressure ventilation or underlying preexisting trauma

e) PRECAUTIONS

(1) When the patient cannot be intubated (following no more than two tracheal intubation attempts), avoid future intubation attempts until the patient reaches the hospital, unless otherwise directed by the physician.

(2) Confirmation of ET placement
As it has been determined that no single method of assessment is 100% reliable, the position of the endotracheal tube must be assessed to be properly in the trachea by all means available to the EMS clinician. The following methods may be used to confirm proper placement of the endotracheal tube:

(a) Visualization of the ET tube protruding adequately past the vocal cords and into the trachea
(b) Auscultation of all lung fields to confirm adequate air exchange
(c) Auscultation of the epigastrium to deny disturbance of the gastric fluids upon ventilation
(d) Observation of the bilateral expansion of the thorax
(e) ETCO$_2$ detection device. At a minimum, utilize colorimetric devices (required for all intubated patients).
(f) The esophageal detection device
(g) Documentation of tube depth at the lip
(h) Other clinical signs of improved perfusion and ventilation (e.g., pupillary response, skin color, etc.)

(3) Once initial placement is confirmed:
(a) The tube must be adequately secured
(b) The patient must be prepared for transport in such a fashion as to minimize movement of the head and neck. *(NEW '20)*

(4) Placement of the tube should be verified by all means possible (as in “(2)” above) and as often as possible as part of the clinicians’ ongoing assessments. It has been further noted that flexion of the neck can cause 3–5 cm displacement of the ET tube displacing the tube from the trachea. At a minimum this reconfirmation should occur
(a) Once the patient is prepared for transport,
(b) Anytime the patient is moved,
(c) Anytime dislodgment of the tube is suspected, and
(d) When responsibility for care is transferred to any other clinician.

(5) During routine reporting procedures, documentation of proper placement should include which methods were utilized and at which points, in the care of the patient, verification was accomplished.

(6) Maintain neutral alignment of head and neck with cervical stabilization when intubating trauma patients.

(7) The Blind Digital method may be utilized for intubation of a patient in whom hyperextension of the cervical spine may be contraindicated. It may also benefit patients with severe facial trauma. However, it must be emphasized that this can be a difficult procedure, and the clinician must be certain that the patient cannot bite.
f) SUGGESTED SIZES FOR ENDOTRACHEAL TUBES AND SUCTION CATHETERS

Equipment Sizes

<table>
<thead>
<tr>
<th>AGE</th>
<th>ORAL AIRWAY</th>
<th>BAG-VALVE- MASK</th>
<th>ETT SIZE</th>
<th>ETT BLADE</th>
<th>SUCTION CATHETER</th>
<th>GASTRIC TUBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature</td>
<td>0</td>
<td>NEONATAL</td>
<td>2.5–3.0</td>
<td>0</td>
<td>6F</td>
<td>5F</td>
</tr>
<tr>
<td>Newborn</td>
<td>0</td>
<td>NEONATAL</td>
<td>3.0–3.5</td>
<td>0–1</td>
<td>6F</td>
<td>5–8F</td>
</tr>
<tr>
<td>3 mo.</td>
<td>1</td>
<td>INFANT</td>
<td>3.5</td>
<td>1</td>
<td>6–8F</td>
<td>5–8F</td>
</tr>
<tr>
<td>6 mo.</td>
<td>1</td>
<td>INFANT</td>
<td>3.5–4.0</td>
<td>1</td>
<td>8F</td>
<td>8F</td>
</tr>
<tr>
<td>1 yr.</td>
<td>1</td>
<td>INFANT</td>
<td>4.0</td>
<td>1</td>
<td>8F</td>
<td>8F</td>
</tr>
<tr>
<td>2 yrs.</td>
<td>2</td>
<td>CHILD</td>
<td>4.0–4.5</td>
<td>1–2</td>
<td>8–10F</td>
<td>8–10F</td>
</tr>
<tr>
<td>3 yrs.</td>
<td>2</td>
<td>CHILD</td>
<td>4.5</td>
<td>2</td>
<td>10F</td>
<td>10F</td>
</tr>
<tr>
<td>4 yrs.</td>
<td>3</td>
<td>CHILD</td>
<td>4.5–5.0</td>
<td>2</td>
<td>10F</td>
<td>10–12F</td>
</tr>
<tr>
<td>6 yrs.</td>
<td>4</td>
<td>CHILD</td>
<td>5.0–5.5</td>
<td>2</td>
<td>10F</td>
<td>12–14F</td>
</tr>
<tr>
<td>8 yrs.</td>
<td>4</td>
<td>CHILD</td>
<td>5.5–6.0</td>
<td>2</td>
<td>10–12F</td>
<td>14F</td>
</tr>
<tr>
<td>10 yrs.</td>
<td>5</td>
<td>CHILD</td>
<td>5.5–6.5</td>
<td>3</td>
<td>12F</td>
<td>14F</td>
</tr>
<tr>
<td>12 yrs.</td>
<td>5</td>
<td>ADULT SMALL</td>
<td>6.5–7.0</td>
<td>3</td>
<td>12F</td>
<td>14–18F</td>
</tr>
<tr>
<td>14 yrs.</td>
<td>5</td>
<td>ADULT</td>
<td>6.5–7.5</td>
<td>3</td>
<td>12–14F</td>
<td>16–18F</td>
</tr>
<tr>
<td>ADULT</td>
<td>5</td>
<td>ADULT</td>
<td>7.0–10.0</td>
<td>4</td>
<td>12–14F</td>
<td>16–18F</td>
</tr>
</tbody>
</table>

ENDOTRACHEAL TUBE SELECTION FOR A CHILD SHOULD BE BASED ON 16 PLUS CHILD’S AGE DIVIDED BY FOUR \(\frac{(16 + \text{YEAR})}{4} = \text{TUBE SIZE} \) OR SIZE RECOMMENDED BY LENGTH-BASED RESUSCITATION TAPE (E.G., BROSLOW TAPE).

AGE IN THE CHART IS A QUICK REFERENCE. GIVEN INDIVIDUAL VARIATIONS IN AIRWAY SIZE, MAY CONSIDER ONE TUBE SIZE LARGER AND ONE TUBE SIZE SMALLER. USE A LENGTH-BASED TAPE IF AVAILABLE.
10. AIRWAY MANAGEMENT: TRACHEOSTOMY CHANGE

a) PURPOSE
Changing a tracheostomy tube may be required to reestablish a patent airway in patients who present with respiratory distress secondary to tracheostomy tube occlusion or obstruction that has not been relieved through suctioning.

b) INDICATIONS
(1) Inability to ventilate with BVM
(2) Ineffective spontaneous ventilations (poor chest rise, decreased breath sounds bilaterally)
(3) Hypoxia, cyanosis, or decreased O₂ saturation levels, not relieved by suctioning
(4) Increased work of breathing
(5) Altered mental status secondary to hypoxia

c) CONTRAINDICATIONS
None

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
(1) Inability to reinsert a tracheostomy tube
(2) Edema at stoma site
(3) Inability to maintain adequate chest rise and fall with assisted ventilations due to air leak around uncuffed tracheostomy tube

Patients greater than eight years of age who require assisted ventilations will need to have a cuffed tube inserted to prevent air leak around the tube and ensure adequate chest rise. If an appropriate sized cuffed tracheostomy tube is not available, then ALS clinicians may use an ET tube.

e) PROCEDURE
(1) Two clinicians or clinician and trained family member
(2) Use latex-safe sterile gloves and equipment.
(3) Position patient with the head and neck hyperextended to expose the tracheostomy site.
(4) Explain procedure to patient/family.
(5) Have new tracheostomy tube nearby.
(6) To remove the tracheostomy tube:
 (a) If a double cannula tracheostomy tube is in place, attempt to change inner cannula first and reassess the patient to see if the obstruction is relieved. If the patient continues to have respiratory distress, change the entire tracheostomy tube. If cuffed, deflate using a 10 mL syringe.
 (b) Carefully cut the tracheostomy ties.
(c) Remove the tracheostomy tube, outward and backward towards the chest.
(d) Lubricate the new tracheostomy tube with lubricating jelly or saline/water.
(e) Insert new tracheostomy tube into stoma, inward and downward towards the lungs.

NOTE: STOP IF YOU MEET RESISTANCE (see (7) below).
(f) If cuffed tracheostomy tube is used, once the tube has been inserted, inflate the cuff with an appropriate amount of air to avoid air leak around the tube (1–3 mL for pediatric tubes and 5–10 mL for adult tubes).
(g) Reassess the patient.
(h) With good chest rise and fall and improved skin color, secure the tracheostomy tube with ties or Velcro® at the back of the neck, so only one fingertip fits between the neck and the ties.

(7) If you meet resistance inserting the tracheostomy tube, do NOT force the tube into the stoma. Request ALS rendezvous, if appropriate. Assess the patient:
(a) Reposition the patient, hyperextend the neck area.
(b) Reoxygenate using BVM to stoma site, with infant mask and appropriate size reservoir bag for the patient’s size. Assess for chest rise and fall.
(c) If inadequate rise and fall of the chest, AND the patient has not had a laryngectomy, attempt BVM orally while placing an occlusive dressing over the stoma site. If a laryngectomy patient, you will only be able to ventilate with BVM at the stoma site.
(d) Attempt to insert a half-size smaller tracheostomy tube after lubricating with lubricating jelly or saline/water.
(e) Proceed with (6) f-g-h above.
(f) If you meet resistance, reassess the patient. Reoxygenate as needed.
(g) Insert a suction catheter through the tracheostomy tube, and use the suction catheter as a guide to insert the tracheostomy tube.
(h) Proceed with (6) f-g-h above.
(i) If ALS, attempt to insert a similar sized endotracheal tube into the stoma. If cuffed endotracheal tube is used, inflate the cuff with an appropriate amount of air to avoid air leak around the tube (1–3 mL for pediatric tubes and 5–10 mL for adult tubes).
(j) If ALS and unable to insert the ET tube into the stoma, AND the patient has not had a laryngectomy, attempt to intubate orally and apply an occlusive dressing over the stoma site.
(k) If you continue to have problems, STOP, consult the Base Station and continue BVM ventilations orally, or BVM to tracheostomy site ventilations if a laryngectomy patient, while en route to the closest appropriate hospital.
11. AIRWAY MANAGEMENT: TRACHEOSTOMY SUCTIONING

a) PURPOSE
Tracheostomy suctioning may be required to maintain a patent airway in patients who present with respiratory distress secondary to tracheostomy tube occlusion or obstruction.

b) INDICATIONS
(1) Increased secretions from tracheostomy site or a mucous plug
(2) Hypoxia, cyanosis, or decreased oxygen saturation levels
(3) Increased work of breathing
(4) Altered mental status secondary to hypoxia

c) CONTRAINDICATIONS
None

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
(1) Bleeding at tracheal stoma site
(2) Dislodgment of tracheostomy tube
(3) Exaggerated cough reflex with introduction of saline
(4) Increased hypoxia/respiratory distress
(5) Infection

e) PROCEDURE
(1) Two clinicians or clinician and trained family member
(2) Use latex-safe sterile gloves and equipment.
(3) Position patient with the head and neck hyperextended to expose the tracheostomy site.
(4) Pre-oxygenate patient at the tracheostomy site:
 (a) NRB mask if patient has adequate effective spontaneous respirations
 (b) BVM if ventilator-dependent or there are ineffective spontaneous respirations
(5) Select appropriately sized suction catheter (2 x internal diameter of tracheostomy tube).
(6) Insert suction catheter:
 (a) Measure from the tracheostomy site to the sternal notch.
 OR
 (b) Insert until there is a cough reflex.
(7) Apply suction ONLY as the catheter is withdrawn, rotating the catheter in a twisting motion between thumb and finger.
(8) Suction for maximum of 10 seconds.
(9) Reoxygenate and reevaluate patient.
(10) Repeat suction procedure as needed (for thick secretions instill 3–5 cc sterile saline/water prior to repeat suctioning).
12. AIRWAY MANAGEMENT: VENTILATORY DIFFICULTY SECONDARY TO BUCKING OR COMBATIVENESS IN INTUBATED PATIENTS

a) INDICATIONS
 Patients successfully intubated with an endotracheal tube, an approved alternative airway device, or cricothyroidotomy, for whom the ability to provide manual or mechanical ventilation is impaired secondary to bucking or combativeness

b) CONTRAINDICATIONS
 Unsecured airway

c) PROCEDURE
 (1) Ventilatory difficulty secondary to bucking or combativeness in intubated patients. (NEW '20)
 (a) Ketamine may be preferred for patients who have hypotension or possible hypovolemia, or if ventilatory difficulty is thought to be the result of pain response.
 (i) Dose: Administer 2 mg/kg IVP/IO over 60 seconds. May repeat 2 additional doses of 1 mg/kg for IVP/IO every 10-15 minutes to a total of 3 doses as needed. Additional doses require medical consultation.
 (2) Midazolam up to 0.1 mg/kg IVP/IO/(over 1–2 minutes)/IM, titrated to abate bucking and relax ventilation while maintaining systolic blood pressure greater than 90 mmHg (110 mmHg if injuries include a suspected head injury). Maximum single dose is 5mg.
 (3) If ventilatory difficulty is thought to be the result of pain response, opioid may be used per Pain Management Protocol in addition to or instead of midazolam: Titrate to abate bucking and relax ventilation while maintaining systolic BP greater than 90 mmHg.
 (4) Continue to monitor oxygen saturation and ventilate to desired ETCO₂ level.
 (5) Obtain on-line medical direction if further problems present.
 (6) Midazolam up to 0.05 mg/kg IVP over 1–2 minutes, titrated to abate bucking and relax ventilation while maintaining systolic BP: greater than 60 in neonates, 70 in infants, and [70 + (2 x years) = systolic BP] for patients greater than 1 year of age. Maximum single dose is 5 mg.
 (7) If ventilatory difficulty is thought to be the result of pain response, opioid may be used per Pain Management Protocol in addition to or instead of midazolam: Titrate to abate bucking and relax ventilation while maintaining systolic BP: greater than 60 in neonates, 70 in infants, and [70 + (2 x years) = systolic BP] for patients greater than 1 year of age.
 (8) Continue to monitor oxygen saturation and ventilate to desired ETCO₂ level.
 (9) Obtain on-line medical direction if further problems present.
13. VENTILATORY MANAGEMENT

a) PURPOSE

(1) Manual ventilation using a bag-valve-mask (BVM) or mechanical (machine) ventilation can be an effective method for managing a patient in the pre-hospital environment when performed correctly. Ventilatory management is important at both the BLS and ALS levels.

(2) Special considerations such as etiology of respiratory failure and method of achieved airway management, including intubation (e.g., rapid sequence intubation), may require the advanced life support clinician to provide additional care.

b) INDICATIONS

(1) Any condition requiring assisted or artificial ventilation with a bag-valve-mask or mechanical (machine) ventilation

(2) All patients will require manual ventilation after the placement of an advanced airway. Inadequate respiratory rate may be secondary to underlying respiratory pathology or the result of pharmacologic intervention secondary to medications used in rapid sequence intubation.

c) CONTRAINDICATIONS

None

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Gastric distension, vomiting, and/or aspiration

(2) Hypoxemia

(3) Secretions and tube/bag obstruction

(4) Barotrauma

(5) Patient agitation

(6) Equipment failure

e) PROCEDURE/PRECAUTIONS:

(1) Have suction available and ensure a patent airway using a BLS airway adjunct (OPA or NPA).

(2) Rate of initial ventilation by single hand bag-valve technique should generally be the following:

(a) For all ages except neonates, 1 breath every 5 seconds (8–12 breaths/min)

(b) For a neonate, 1 breath every 3 seconds (higher rates may be required)

(3) AVOID hyperventilating unless patient exhibits signs of brainstem herniation (e.g., unequal pupils, posturing). Hyperventilation is associated with increased mortality.
4. In the absence of contraindications (e.g., CPR or spinal trauma), consider elevating the head of the bed to 30 degrees.

5. Continuous pulse oximetry shall be used. If a sudden drop in SpO_2 is observed, assess airway patency and consider obstruction (e.g., tongue, vomiting, blood), poor seal around BVM, and flow of oxygen being administered (LPM).

6. A gastric tube should be considered for gastric decompression whenever distention is caused by BVM ventilation. Gastric distention can reduce effectiveness of ventilations.

7. Waveform capnography and patient-specific considerations:
 a. Continuous ETCO$_2$ shall be used whenever an advanced airway has been placed.
 b. Continuous ETCO$_2$ monitoring is encouraged for all other manually-ventilated patients.
 c. The waveform shape and reading can contribute to an understanding of the underlying pathology.
 d. Waveform capnography is utilized to optimize manual ventilation. Deliver ventilations to achieve a target ETCO$_2$ level of 35–40 mmHg if patient has a pulse. (NEW ’20)
 e. ETCO$_2$ can be used to assess trends during a cardiac arrest and may contribute to understanding the pathology. A sudden substantial increase in ETCO$_2$ may indicate ROSC.
 f. Hypercapnia is seen in patients experiencing respiratory failure as a result of obstructive disease, such as asthma and COPD. Chronic baseline hypercapnia should be considered when ventilating to a target ETCO$_2$.
 g. A target ETCO$_2$ of 30–35 mmHg should be used for the rare patient who exhibits signs of brainstem herniation. Lower ETCO$_2$ has been associated with increased mortality. (NEW ’20)

8. If advanced airway is placed and patient does not have adequate chest rise, absent or significantly diminished breath sounds, or decreased SpO$_2$ or abnormal ETCO$_2$ levels, consider the DOPES mnemonic:
 “D”: Is the tube displaced? Assess for bilateral breath sounds and reassess tube depth and compare to initial depth noted after insertion.
 “O”: Is an obstruction present? Suction the tube with a flexible suction catheter.
 “P”: Are there signs of a tension pneumothorax? If present, perform needle decompression thoracostomy.
 “E”: Is there an equipment malfunction? Check oxygen flow in tubing and level in portable cylinder, determine whether SpO$_2$ and ETCO$_2$ devices are working correctly, and ensure the cuff is adequately inflated.
 “S”: If history of asthma or COPD is known, consider extending the interval between ventilations to avoid stacked ventilations.
(9) Consider using a positive end expiratory pressure (PEEP) valve on the BVM, especially if the patient is hypoxemic (start at 5 cm H₂O).

(10) If combativeness or bucking prevents the delivery of adequate ventilations, management shall be guided by the Ventilatory Difficulty Secondary to Bucking Protocol.
14. ELECTRICAL THERAPY: AUTOMATED EXTERNAL DEFIBRILLATION (AED)

a) INDICATIONS

Sudden cardiac arrest (patients with no pulse and not breathing).

Neonate (1 hour to 28 days of life) to less than 1 year of age	Manual defibrillator preferred. (If unavailable, an AED with pediatric capability is preferred over an adult AED.)
1 year of age to 8 years of age	AED with pediatric capability, using the pediatric capability, is preferred over an adult AED.
Child 8 years of age or greater	Adult AED

b) CONTRAINDICATIONS

Patient exhibiting signs of life
Newly born patients (up to one hour after birth)

USE OF THE AED IN THE MANUAL MODE IS RESERVED FOR ALS.

c) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Burns to skin
(2) Deactivation of patient’s implanted pacemaker
(3) Injury to patient, self, and/or bystanders

d) PRECAUTIONS

(1) Make sure the patient and the environment are dry.
(2) Avoid placing pads over cardiac pacemakers/defibrillators or nitroglycerin patches.
(3) DO NOT touch the patient while the AED is analyzing the patient or discharging energy.
(4) ENSURE that no one is touching the patient when the shock button is pushed.
(5) Never defibrillate while moving the patient or when in a moving ambulance.

e) PROCEDURE

(1) Initiate analysis of rhythm.
(2) If shock is indicated:
 (a) Ensure all individuals are clear of the patient.
 (b) Initiate shock to the patient.
 (c) Immediately perform 5 cycles of CPR between shocks, then initiate analysis of rhythm.
 (d) If patient remains pulseless, continue this cycle of CPR and shocks until the AED prompt states "no shock advised," or ROSC is achieved or ALS arrives or the patient is transported or the Termination of Resuscitation Protocol is initiated.
(3) If shock is not indicated and the patient remains in cardiac arrest:
 (a) Perform 5 cycles of CPR.
 (b) Initiate analysis of rhythm.
 (c) If shock is indicated, see “If shock is indicated” section above.
 (d) If shock is not indicated, continue CPR until ALS arrives or ROSC is achieved or the patient is transported or the Termination of Resuscitation protocol is initiated.
(4) If shock is not indicated and patient regains pulse, treat per Return of Spontaneous Circulation (ROSC) protocol.

f) SPECIFIC DOCUMENTATION

(1) Document the number of analyses and shocks delivered, times of assessments and treatments, and the patient’s response to shocks/CPR. Specify the type of AED, location of AED, bystander and clinician contact, and the triggering event.
(2) If using an AED with EKG strip recorder, generate 2 recordings.
(3) Give one to the ALS clinician or hospital and attach the other to your patient care report.
(4) Record the name of the contact for accessing AED data download summary.
(5) Consider bringing the AED to the hospital for downloading.
15. ELECTRICAL THERAPY: CARDIOVERSION

a) INDICATIONS

Hemodynamically unstable with life-threatening, rate-related signs and symptoms including hypotension, acutely altered mental status, signs of shock, ischemic chest discomfort/AMI, or acute heart failure.

b) DOSAGE

(1) Adult **NEW ’20**
 (a) For SVT or VT or atrial flutter:
 (i) Initial 100 J, or follow manufacturer’s recommendations
 (ii) Subsequent 200 J, 300 J, 360 J, or follow manufacturer’s recommendations
 (b) For atrial fibrillation:
 (i) Initial 200 J, or follow manufacturer’s recommendations
 (ii) Subsequent 300 J, 360 J, or follow manufacturer’s recommendations

(2) Pediatric

Symptomatic tachydysrhythmias
 (a) Initial 0.5 J/kg; if the calculated joules setting is lower than the defibrillation device is able to deliver, use the lowest joules setting possible or obtain medical consultation.
 (b) Subsequent 1 J/kg; repeat at 2 J/kg

(3) If the patient exhibits ventricular fibrillation following emergency cardioversion, immediately turn off the synchronizer and defibrillate with appropriate delivered energy (200 to 360 J for adults and 2 to 4 J/kg for pediatric patients) and refer to defibrillation and/or other appropriate protocol.

c) CONTRAINDICATIONS

Tachydysrhythmias due to digitalis toxicity

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

An unsynchronized shock can result in ventricular fibrillation.
e) PRECAUTIONS

(1) If the calculated joules setting is lower than the cardioversion device is able to deliver, use the lowest joules setting possible or obtain medical consultation.

(2) Pre-procedural sedation or analgesia
 (a) Patient may experience moderate to severe discomfort during cardioversion. Consider pre-medication by administering opioid per Pain Management Protocol.
 OR
 (b) Administer midazolam 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment, with maximum single dose 5 mg. (Reduce by 50% for patients 69 years or older.)

(3) Pre-procedural sedation or analgesia
 (a) Patient may experience moderate to severe discomfort during cardioversion. Consider pre-medication by administering opioid per Pain Management Protocol.
 OR
 (b) Administer midazolam 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment, with maximum single dose 5 mg.
16. ELECTRICAL THERAPY: DEFIBRILLATION

a) PURPOSE

Defibrillation involves the delivery of non-synchronized direct electric current (mono or biphasic) to the myocardium of a patient exhibiting ventricular fibrillation or ventricular tachycardia without palpable pulses/blood pressure. The objective of defibrillation is to depolarize the entire myocardium, which, it is hoped, will result in allowing a single reliable pacemaker site to assume pacemaker control at a rate capable of producing an adequate cardiac output.

b) INDICATIONS

(1) Ventricular fibrillation
(2) Ventricular tachycardia without palpable pulse or BP

c) DOSAGE

(1) Adult
 (a) Initial delivered energy monophasic 360 J or biphasic 120–200 J
 (b) Subsequent delivered energy monophasic 360 J or biphasic increasing joules setting, if device allows

(2) Pediatric (NEW '20)
 (a) Initial delivered energy 2 J/kg (monophasic or biphasic)
 (b) Subsequent delivered energy at increasing dosage: 4 J/kg, 6 J/kg, 8 J/kg, to a maximum of 10 J/kg.

d) CONTRAINDICATIONS

None

e) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Burns to the skin
(2) Deactivation of patient’s implanted pacemaker

f) PRECAUTIONS

(1) Patients who are fully digitalized may require less than the normal recommended delivered energy.
(2) If the calculated joules setting is lower than the defibrillation device is able to deliver, use the lowest joules setting possible or obtain medical consultation.
17. ELECTRICAL THERAPY: EXTERNAL TRANSCUTANEOUS CARDIAC PACING

a) PURPOSE

Non-invasive cardiac pacing, also referred to as external or transcutaneous pacing, involves the temporary application of externally applied electrodes to deliver an adjustable electrical impulse directly across an intact chest wall for the purpose of rhythmically stimulating the myocardium to increase the mechanical heart rate.

b) INDICATIONS

(1) It is indicated for the treatment of hemodynamically compromised patients in settings where cardiac output is compromised due either to the complete failure of cardiac rhythm or to an insufficient rate of the patient's intrinsic pacemaker.

(2) Bradycardia (EKG other than second-degree Mobitz Type II or third-degree AV Block)

(3) Second-degree Mobitz Type II and third-degree AV block with a systolic BP of less than 80 mmHg, or 80–100 mmHg with shock-like signs or symptoms. In the presence of Mobitz II and third-degree AV block, medical consultation is required for atropine administration.

(4) Pacing may be indicated in certain instances in which the heart rate is 60–75 BPM and shock-like symptoms persist. Pacing in these instances requires medical consultation from a physician.

(5) Pediatric patients with profound symptomatic bradycardia unresponsive to optimal airway management, oxygenation, epinephrine, and atropine.
c) DOSAGE

Start pacemaker at age appropriate heart rate:
Infant (less than 1 year): 120 beats per minute
Child (1 through 12 years): 100 beats per minute
Adult/Adolescent (13 years and greater): 80 beats per minute

Start milliamperes (m.a.) as low as possible and gradually increase m.a. until palpable pulse to confirm capture or 200 m.a.

CONTINUE CHEST COMPRESSIONS FOR PEDIATRIC PATIENTS WHO REMAIN POORLY PERFUSED DESPITE PACEMAKER CAPTURE.

d) CONTRAINDICATIONS

(1) Non-witnessed cardiopulmonary arrest with asystole
(2) Patient not meeting blood pressure criteria

e) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

(1) Patient may experience moderate to severe discomfort during pacing. Consider pre-medication by administering opioid per Pain Management Protocol.
 (a) Administer opioid per Pain Management Protocol.
 OR
 (b) Administer midazolam 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment, with maximum single dose 5 mg. (Reduce by 50% for patients 69 years or older.)

(2) Patient may experience moderate to severe discomfort during pacing.
Consider pre-medication by administering opioid per Pain Management Protocol.
(a) ✪ Administer opioid per Pain Management Protocol.

OR
(b) ✪ Administer midazolam 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment, with maximum single dose 5 mg.

f) PRECAUTIONS

When properly applied, chest compressions can be performed directly over the insulated electrodes while the pacer is operating.
18. GO-TEAM ACTIVATION

a) PURPOSE

The University of Maryland Medical System, R Adams Cowley Shock Trauma Center (STC) maintains a deployable advanced surgical team (Go-Team) that includes an attending physician with surgical skills and an anesthetist capable of assisting EMS clinicians with the care of seriously injured patients when extrication times are anticipated to be more than 1 hour. On-scene incident commanders may request the Go-Team by contacting SYSCOM.

b) INDICATIONS

The on-scene incident commander may contact SYSCOM and request the Go-Team for seriously injured patients with potentially life or limb threatening injuries when extrication times are anticipated to be more than 1 hour and who may require advanced resuscitative or surgical services that are beyond the scope of prehospital emergency services. Examples include:

1. During a prolonged extrication, assist rescue personnel with planning the type and pace of the rescue by assessing the extent of injury and determine potential consequences that delays in time to definitive care might have on patient outcome.
2. A patient trapped in heavy machinery requiring anesthesia/pain management to perform extrication
3. A patient surviving a building collapse requiring an amputation to enable extrication
4. A patient with a prolonged extrication requiring advanced fluid resuscitation including the administration of blood products
5. Insertion of chest tubes or gastric and urinary catheters during the course of prolonged extrication

c) PROCEDURE

1. On-scene incident commander will request the Go-Team by contacting SYSCOM. SYSCOM will coordinate the Go-Team’s transport to and from the scene with Maryland Express Care.
2. If the Go-Team is dispatched by air, then SYSCOM will notify the Go-Team when the aircraft is landing on the STC helipad. If the Go-Team is dispatched by land, then Maryland Express Care will coordinate the Team’s response.
3. Prior to the Go-Team’s departure to the scene, SYSCOM will notify the on-scene incident commander for the Go-Team’s ETA and reconfirm the need for the Go-Team.
(4) If the Go-Team is dispatched, the EMS medical commander will contact them using the “Trauma Line” (or other radio) to update them about the circumstances of the entrapment and the patient’s condition.

(5) When the Go-Team arrives on the scene, they are to report to the on-scene incident commander and operate within the Incident Command System.

(6) Once the patient is extricated, the EMS system will transport the patient to the appropriate facility under established EMS guidelines with consultation by the Go-Team physician.

(7) The Go-Team will document the care they provide and file a patient care report with the State EMS Medical Director at MIEMSS.
19. IV ACCESS AND MAINTENANCE: EXTERNAL JUGULAR (EJ) INTRAVENOUS ACCESS

a) PURPOSE

The external jugular vein is a large vessel in the neck that may be used by a CRT-(I) or paramedic for intravenous cannulation.

b) INDICATIONS

EJs are appropriate when IV access is emergently indicated, but an extremity vein cannot be catheterized.

c) CONTRAINDICATIONS

(1) Inability to visualize the vein

(2) Suspected spinal trauma

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

Hematoma, pain, infiltration, infection, dislodged catheter, nerve injury, thrombosis, air embolism, airway occlusion, and pneumothorax

e) PRECAUTIONS

Carefully secure EJ catheter and tubing.
20. GLUCOMETER PROTOCOL

a) PURPOSE

The glucometer should be utilized by ALS clinicians to determine the blood glucose level in an attempt to determine the etiology of the patient’s condition and provide treatment tailored to the needs of the patient.

b) INDICATIONS

The glucometer should be utilized for any patient presenting with an altered mental status, seizure activity, or unresponsiveness, stroke, combative, suspected cyanide poisoning, reported history of high or low blood sugar, and pediatric bradycardia or cardiac arrest.

IN ADDITION FOR PEDIATRIC PATIENTS: DIZZINESS, SYNCOPAL EPISODES, VOMITING IN KNOWN DIABETIC, OR ALCOHOL INGESTION

c) TREATMENT

(1) ADULT
 (a) If blood glucose is less than 70 mg/dL administer 10% dextrose in 50 mL (5 gram) boluses, one minute apart, to a maximum of 250 mL OR 25 grams of 50% dextrose IVP, until:
 (i) the patient has a return to normal mental status, and;
 (ii) the patient’s blood glucose is at least 90 mg/dl or
 (iii) if, following 250 mL of 10% dextrose or 25 grams of 50% dextrose, patient has persistently altered mental status and blood glucose less than 90 mg/dl, repeat dosing regimen in (a).

 (b) If unable to initiate an IV and blood glucose is less than 70 mg/dL, administer glucagon 1 mg IM/IN.

 IF, 20 MINUTES AFTER IM/IN GLUCAGON ADMINISTRATION, THE PATIENT HAS PERSISTENTLY ALTERED MENTAL STATUS AND BLOOD GLUCOSE LESS THAN 90 MG/DL, CONSIDER IO ADMINISTRATION OF 10% OR D50W DEXTROSE CONSISTENT WITH THE DOSING REGIMEN OUTLINED IN (a).

 (c) If blood glucose is greater than 300 mg/dl, administer 10 mL/kg LR bolus unless rales, wheezing, pedal edema, or history of renal failure or CHF is present.
(2) PEDIATRIC

Patient less than 28 days - if blood glucose is less than 40 mg/dL administer 2 mL/kg of 10% dextrose IV/IO.

D10W is prepared by mixing one part of D50W with four parts LR.

Recheck glucose after first dose.

- If blood glucose is less than 40 mg/dL, obtain medical consultation to administer second dose of D10W.

Patient 28 days or greater until the 18th birthday - if blood glucose is less than 70 mg/dL, administer 2–4 mL/kg of 10% dextrose IV/IO to a maximum of 25 grams.

Recheck glucose after first dose.

- If blood glucose is less than 70 mg/dL, obtain medical consultation to administer second dose of D10W.

(i) If unable to start IV and blood glucose is less than 70 mg/dL, administer glucagon IM/IN:

- 5 years of age up to patient’s 18th birthday: 1 mg
- 28 days–4 years of age: 0.5 mg
21. HIGH PERFORMANCE CPR

a) PURPOSE
To improve survival of sudden out-of-hospital cardiac arrest patients in Maryland. High Performance Cardio-Pulmonary Resuscitation (HPCPR) employed with Code Resource Management (CRM) is a proven concept based on a team approach that ensures effective and efficient use of EMS resources. This systematic change in treatment and management of cardiac arrest patients has demonstrated effectiveness in Maryland, and provides an example for systems embarking on measuring and improving care that is based upon proven research and practices.

b) INDICATIONS
Patients in cardiac arrest who are greater than 24 hours old.

c) CONTRAINDICATIONS
(1) Patients meeting the criteria for Pronouncement of Death in the Field Protocol
(2) Patients who are less than 24 hours old

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
None

e) PRECAUTIONS
None

f) IMPORTANT ROLE OF DISPATCHER TELEPHONE CPR (T-CPR)
(1) Immediate recognition of unresponsiveness, activation of EMS system response via 9-1-1, and initiation of CPR by the lay rescuer is essential to maximize survival.
(2) In an unresponsive patient, rapid recognition of agonal (gasping) respirations, or no respirations should prompt dispatcher-directed compressions to the caller (Dispatch-directed T-CPR).
(3) Dispatch-directed T-CPR delivers CPR prior to EMS system arrival and presents a patient more responsive to EMS interventions, thus providing the ability to improve survival.

g) PROCEDURE FOR HIGH PERFORMANCE CPR
(1) The first clinician at the patient's side will assess and initiate compressions.
(2) Effective Compressions - Manual chest compressions should be initiated immediately upon identification of cardiac arrest, as long as the scene is safe. When compressions are done manually, compressors should be rotated every 2 minutes in order to maintain high-quality compressions. Ideally, one compressor is on each side of the patient's chest: one person compressing the chest and the other person ready to start. Chest compressions will be performed at a depth of at least 2 inches allowing for complete recoil of the chest after each compression.

For patients less than one year of age, compressions will be performed at a depth of 1½ inches. For patients greater than one year old up to age 13, compressions will be at a depth of 2 inches.
(3) Compressions should be accomplished with equal time given for the down and up motion and achieve a rate of 100–120 per minute.

(4) **Continuous Compressions** - Chest compressions will be performed at a rate of 100–120 per minute and will NOT be interrupted during the two-minute cycle for any reason. Other treatments such as ventilations, IV access, or intubation attempts will be done while compressions are ongoing. After completion of a two-minute cycle, a brief pause to assess pulses and/or defibrillate will be limited to less than 10 seconds.

(5) **Defibrillation** – placement of the defibrillator pads will not interrupt chest compressions

(a) **Automatic External Defibrillation**

The AED will be powered on as soon as the cardiac arrest is confirmed. Do not interrupt chest compressions to remove clothing or place defibrillation pads. If the AED charges after analyzing, chest compressions will be performed while the device charges, then the patient will be “cleared” and defibrillated. Compressors will hover over the patient with hands ready during defibrillation so compressions can start immediately after a shock. Another two-minute cycle of compressions will be immediately performed. Pulse checks will not occur after a shock, but only after the AED prompts “no shock advised.” If no pulse is palpated, or if unsure, immediately perform another two minutes of CPR.

(b) **Cardiac Monitor/Defibrillator**

When a manual defibrillator is in use, it will be charged to the appropriate energy level as the end of the compression cycle nears (approximately 1 minute and 45 seconds into a two-minute cycle). At the end of the two-minute cycle, the patient will be cleared, the rhythm will then be interpreted rapidly, and the patient will either be defibrillated or the defibrillator energy charge will be cancelled. This sequence must be performed within 10 seconds. During this sequence, the compressors will hover over the patient with hands ready. If a shock is delivered, the compressor will immediately resume CPR. Rhythm interpretation will not occur after a shock, but only occur after the two-minute cycle of CPR is performed. If a shock is not indicated, check for a pulse. If patient remains pulseless, immediately resume HPCPR.

(6) **Ventilations** - Ventilations will be performed without stopping chest compressions. Ventilations are important but can impede the cardiac output from compressions. Thus, rescuers should not provide too many breaths or use excessive force. One ventilation will be given every 10th compression during recoil (upstroke). Once an advanced airway is in place, ventilations will be interposed asynchronously with uninterrupted compressions (1 ventilation every 6 seconds, for all ages). Ventilation volume should be low volume (approximately 500 cc), best approximated by a three finger or end of bag squeeze. High performance, continuous compressions remain the priority. Ensure ventilations are adequate with bag-valve-mask attached to 100% oxygen. Clinicians will not interrupt compressions to obtain an advanced airway.

For children **up to age 13**, maintain a ratio of 2 ventilations every 30th compression for single rescuer CPR or 2 ventilations every 15th compression for two or more rescuer CPR (one ventilation on the recoil of the 14th compression and one ventilation on the recoil of the 15th compression).
Rescuers Should	Rescuers Should Not
Perform chest compressions at a rate of 100-120/min | Compress at a rate slower than 100/min or faster than 120/min
Compress to a depth of at least 2 inches (5 cm) | Compress to a depth of less than 2 inches (5 cm) or greater than 2.4 inches (6 cm)
Allow full recoil after each compression | Lean on the chest between compressions
Minimize pauses in compressions | Interrupt compressions for greater than 10 seconds
Ventilate adequately (2 breaths after 30 compressions, each breath delivered over 1 second, each causing chest rise) | Provide excessive ventilation (ie, too many breaths or breaths with excessive force)

(7) **Advanced Life Support** - ALS clinicians will address defibrillation, IV/IO access, medication administration, and advanced airway placement, as indicated within these protocols; however, the placement of an advanced airway is no longer an early focus of cardiac arrest management and will not interrupt chest compressions. Nasal capnography may be utilized to optimize CPR performance and evaluation of ROSC, with use of bag-valve-mask ventilation.

(8) **Return of Spontaneous Circulation (ROSC)** – Refer to ROSC Protocol.

(9) **Quality Improvement/Performance Metrics** – Time to CPR, time to defibrillation, and quality of CPR are all factors that have been shown to have a positive impact on survival. One metric that field crews can use to evaluate performance is CPR Fraction.

(a) CPR Fraction – The time CPR is being performed divided by the total time of the cardiac arrest. This fraction is typically reported as a percentage.
 (i) A target goal for crews, that has been associated with improvements in survival, is a CPR fraction of equal to or greater than 80%.
 (ii) Minimizing pre-shock pauses (e.g., charging defibrillator while clinicians performing chest compressions)
 (iii) Feedback is best provided in real time or as close to the provision of care as possible.
(b) CPR compression rates should be between 100 and 120 per minute.
(c) Compression pauses should always be less than 10 seconds.

h) PROCEDURE: CODE RESOURCE MANAGEMENT (CRM)

Crews should coordinate their duties keeping the call priorities in mind. Intervention priorities are (in order of highest to lowest):
The number of personnel on a given incident and the qualifications of those personnel can vary; however, the priorities remain the same. Appropriate crew roles are outlined below:

2 clinician crew:
Clinician 1 – Chest compressions
Clinician 2 – Ventilate, attach/operate AED/defibrillator, assume crew leader responsibilities (clinicians rotate positions every two minutes)
Roles remain the same even if clinicians are ALS equipped

3 clinician crew:
Clinician 1 – Chest compressions
Clinician 2 – Ventilate
Clinician 3 – Crew Leader, attach/operate AED/defibrillator
(Clinicians 1 and 2 rotate every two minutes)
Roles remain the same even if clinicians are ALS equipped

4 clinician crew:
Clinician 1 – Chest compressions
Clinician 2 – Ventilate
Clinician 3 – Attach/operate AED/defibrillator
Clinician 4 – Crew leader
(Clinicians 1, 2, and 3 rotate every two minutes)

Once first two roles have begun treatment, ALS clinicians will establish IV/IO and administer medications.

Greater than 4 clinicians - Utilize the same initial assignments as the four clinician crew. The crew leader will assign additional roles such as informing the family of patient status, gathering patient information, and documenting the medical interventions performed on the call. If resources allow, rotate additional clinicians to do chest compressions to achieve optimal performance.

Crew leader - The crew leader will keep time, record interventions performed during the arrest, give compression feedback and ensure rotation of personnel doing compressions every two minutes. Verbal announcements of time should occur at one minute, 30 seconds before reassessment, 15 seconds left, and countdown to reassessment at 10 seconds.
PEDIATRIC HIGH PERFORMANCE CPR (HPCPR)

Assess Patient (less than 10 seconds)

Unresponsive
Not Breathing
No pulse

Clinician #1
Start Chest Compressions (100-120/min)
Ventilations 2 Breaths: 30 Compressions
Call for AED/Defibrillator

Clinician #2
Ventilations 2 Breaths: 15 compressions
Place Airway Adjunct
Suction
Attach AED/Defibrillator

Clinician #3 or More
• Obtain IO Access
• Administer Medication
• Establish ALS Airway*
• Family Support

Coordinated pause Activities (complete in less than 10 seconds)
• Check pulse
• Check rhythm
• Shock if indicated
• Rotate compressors
• Resume CPR

Pediatric HPCPR Team Member Initial Roles

Clinician #1:
• Chest compressions at 100-120 per minute
• Call for AED

Clinician #2:
• Ventilate at 2 breaths: 15 compressions
• Attach AED

Clinician #3 or MORE:
• Assume timekeeper role
• Assume AED role
• IO Access
• Medications
• Establish ALS Airway
• Family Support

Essentials of High Performance CPR for Pediatrics

1. Ensure proper chest compression rate
 • 100-120/min
2. Ensure proper compression depth
 • Less than 1 year – 1 1/2 inches (4 cm)
 • Greater than or equal to 1 year – 2 inches (5 cm)
3. Minimize interruptions (less than 10 second pause)
4. Ensure full chest recoil
5. Coordinate 2 minute cycles
6. Rotate Compressor

* Once an advanced airway is in place, one ventilation every 6 seconds interposed asynchronously
22. INTRAOSSEOUS INFUSION

a) PURPOSE
The administration of fluids and medications via intraosseous (IO) infusion has long been known to be a relatively safe and effective procedure in the treatment of critically ill patients.

b) INDICATIONS
Patients in which the following conditions are present:
(1) Cardiac arrest, OR
(2) Profound hypovolemia, OR
(3) No available vascular access, or following two unsuccessful peripheral IV attempts for patients with any other life-threatening illness or injury requiring immediate pharmacological or volume intervention OR
(4) In pediatric patients in cardiac arrest, go directly to IO if no peripheral sites are obvious and without having to attempt peripheral access.

c) PROCEDURES
Allowable sites for IO:
(1) Sites for manual placement of IO needle
 (a) IO needle with 18 gauge should be used in patients less than 3 kg.
 (b) Patients 6 years of age or less, use the proximal tibial site: locate the preferred site of 1–3 cm distal to the tibial tuberosity on the anteromedial surface of the tibia.
 (c) Patients greater than 6 years of age, use the distal tibial site: locate the medial surface of the distal tibia just proximal to the medial malleolus.
(2) Sites for mechanical placement of IO needle
 (a) Select appropriate site:
 (i) Patients 3–39 kg or who have not yet reached their 13th birthday: use the proximal tibial site. Extend the leg. Insertion site is approximately 1 cm medial to the tibial tuberosity, or just below the patella (approximately 1 cm or one finger width) and slightly medial (approximately 1 cm or one finger width), along the flat aspect of the tibia. Pinch the tibia between your fingers to identify the center of the medial and lateral borders. Aim the needle set at a 90-degree angle to center of the bone.
 (ii) Patients 40 kg and greater and who have reached their 13th birthday:
 a. Preferred site: use the proximal humerus site: Place the patient’s hand over the abdomen (elbow adducted and humerus internally rotated). Secure the arm in place across the abdomen.
 i. Place your palm on the patient’s shoulder anteriorly. The area that feels like a “ball” under your palm is the general target area. You should be able to feel this ball, even on obese patients, by pushing deeply.
ii. Place the ulnar aspect of your hand vertically over the axilla.

iii. Place the ulnar aspect of your other hand along the midline of the upper arm laterally.

iv. Place your thumbs together over the arm. This identifies the vertical line of insertion on the proximal humerus.

v. Palpate deeply up the humerus to the surgical neck. This may feel like a golf ball on a tee. The spot where the “ball” meets the “tee” is the surgical neck.

vi. The insertion site is 1 to 2 cm above the surgical neck, on the most prominent aspect of the greater tubercle. Point the needle set tip at a 45-degree angle to the anterior plane and posteromedial.

b. If proximal humerus site is not available, use the proximal tibial site. Extend the leg. Insertion site is approximately 2 cm medial to the tibial tuberosity, or approximately 3 cm (two finger widths) below the patella, and approximately 2 cm medial, along the flat aspect of the tibia. Aim the needle set at a 90-degree angle to the center of the bone.

c. If proximal site is not available, use the lower extremity distal tibia site. Insertion site is located approximately 3 cm (2 finger widths) proximal to the most prominent aspect of the medial malleolus. Palpate the anterior and posterior borders of the tibia to assure that your insertion site is on the flat center aspect of the bone. Aim the needle set at a 90-degree angle to the center of the bone.

(b) Select the appropriate needle:

(i) There are three lengths of 15 gauge mechanical IO needles.

(ii) Estimate tissue depth at selected site and select appropriate needle (15 mm, 25 mm, or 45 mm). Always use the 45 mm needle for the proximal humerus site. Point the needle set tip at a 45-degree angle to the anterior plane and posteromedial.

(iii) Insert so needle is touching bone.

(iv) Check the IO needle hub to assure that the 5 mm mark on the needle is visible when the tip of the needle touches the bone. The black line closest to the hub should be visible.

(v) Gently drill into the humerus 2 cm or until the hub is close to the skin. Gently drill, into the tibia approximately 1-2 cm after entry into the medullary space or until the needle set hub is close to the skin. Hold the hub in place and pull the driver straight off. Continue to hold the hub while twisting the stylet off the hub with counter-clockwise rotations. The catheter should feel firmly seated in the bone (1st confirmation of placement).

a. Place the stylet in a sharps container.

b. Place the dressing over the hub.

c. Attach an extension set to the hub if available; firmly secure by twisting clockwise.

d. Aspirate for blood/bone marrow (2nd confirmation of placement). For patients unresponsive to pain:

e. Flush the IO catheter with 5-10 mL IV fluid.
TWO ATTEMPTS WITHIN FIVE MINUTES ARE PERMITTED. MEDICAL CONSULTATION SHOULD BE OBTAINED FOR FURTHER ATTEMPTS.

(3) Pain due to infusion via IO
 (a) To prevent or treat pain during an IO infusion for adults, administer 20–40 mg of 2% (only 1–2 mL preservative free/cardiac) lidocaine IO.
 (b) To prevent or treat pain during an IO infusion for an adolescent patient (13–18 years of age), administer 20–40 mg of 2% (only 1–2 mL preservative free/cardiac) lidocaine IO.
 (c) Medical consultation is required for patients under 13 years of age.
 (d) Slowly infuse lidocaine IO. Allow lidocaine to dwell in IO space 60 seconds. Flush with IV fluid.

d) CONTRAINDICATIONS
 (1) Conscious patient with stable vital signs
 (2) Peripheral vascular access readily available
 (3) Suspected or known fractures in the extremity targeted for IO infusion
 (4) Previous attempt in the same bone within 48 hours
 (5) Cellulitis at the intended site of the procedure
 (6) Patient with known bone disorder
 (7) Prior knee or shoulder joint replacement
 (8) Inability to identify landmarks

e) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
 (1) Extravasation of fluid
 (2) Infection
 (3) Compartment syndrome

f) PRECAUTIONS
 Humeral site: Stabilize the needle prior to any attempt at removing the driver. The humeral cortex can be considerably less dense, and failure to stabilize the needle may cause inadvertent dislodgement. Also, as patients advance in age, bone density continues to decrease and the proximal humeral needle’s stability must be routinely assessed.
23. INTRAVENOUS MAINTENANCE THERAPY FOR EMT

a) Clinician-controlled IV solutions

(1) The EMT is authorized to be the primary caregiver for patients with established intravenous (IV) therapy ONLY when the reason for transport is not related to complications associated with the IV line, and:

(a) The IV Solution DOES NOT contain:
 (i) MEDICATIONS,
 (ii) WHOLE BLOOD, or
 (iii) BLOOD PRODUCTS (such as plasma, platelets, or packed red blood cells)

(b) The IV catheter is placed in a PERIPHERAL LIMB VEIN, or

(c) The IV catheter is a capped (e.g., heparin-locked) peripheral or central line, and

(d) No other ALS interventions are required.

(2) IV fluids

The EMT is authorized to perform IV maintenance of NON-MEDICATED IV solutions that contain only:

(a) LR solution
(b) 2.5%–10.0% dextrose in water
(c) 0.25%–0.9% saline solution
(d) Potassium chloride (KCL) added to the solution. The amount of KCL in solution shall not exceed 20 milli-equivalents (mEq)/liter OR
(e) Peripheral Parenteral Nutrition (PPN) or Total Parenteral Nutrition (TPN)

IF IV FLUIDS OR PPN ARE BEING ADMINISTERED VIA INFUSION PUMP AND NOT PATIENT-CONTROLLED, THE PATIENT MUST BE ACCOMPANIED BY A NURSE OR APPROPRIATELY TRAINED ALS CLINICIAN.

b) Patient-controlled medications or IV solutions

The EMT is authorized to be the primary caregiver for patients with established intravenous (IV) therapy ONLY when the reason for transport is not related to complications associated with the IV line or the medications being infused and the patient has been caring for the line, IV fluids, and/or IV medications at home without the assistance of a health care clinician.

UNDER NO CIRCUMSTANCES SHALL THE EMT CLINICIAN ATTEMPT TO MAKE ANY ADJUSTMENTS TO IV INFUSION PUMPS, NOR SHOULD THE EMT CLINICIAN ADMINISTER ANY ADDITIONAL MEDICATIONS OR IV FLUIDS.
c) Provide patient care according to appropriate protocol.

d) Routine IV maintenance procedures

(1) Ensure IV solution and catheter placement meets criteria above.

(a) Request assistance of appropriate level health care clinician if IV solution and/or IV catheter placement do not meet criteria above, or

(b) Request authorized personnel at health care facility to:

(i) Replace IV solution with an appropriate IV solution, or

(ii) Discontinue the IV prior to departing the scene.

(2) Confirm appropriate IV solution drip rate prior to transport.

(3) Ensure IV bag contains adequate volume of solution for duration of patient transport.

If IV solution is not adequate, request authorized personnel at health care facility to:

(a) Replace IV solution with an adequate volume, or

(b) Discontinue the IV prior to departing the scene.

(4) Ensure IV solution is flowing at appropriate rate.

(5) Ensure patient has no signs or symptoms specifically related to complications of IV therapy prior to transport.

If patient has signs or symptoms related to complications of IV therapy: Request authorized personnel at health care facility to correct the complication.

e) Complications of IV Therapy

(1) During patient transport, many possible complications of IV therapy may occur that the EMT must be prepared to manage.

(a) Local complications may include: pain, hematoma, infiltration, infection, dislodged catheter, and tissue sloughing.

DO NOT ATTEMPT TO REINSERT DISLODGED IV CATHETER.

(b) Central complications may include: syncope, sepsis (infection), air embolism, pulmonary edema, pulmonary thromboembolism, congestive heart failure, overhydration, and catheter embolism.
(c) General complications may include: restricted flow (e.g., bent tubing, fluid-filled air chamber, inappropriate bag placement), and empty IV solution bag.

(2) Obtain medical direction and prepare to discontinue the IV if any of the complications described above are assessed and/or observed.

(3) If medical direction is genuinely not obtainable, the EMT shall discontinue the IV as soon as possible.

THE EMT IS AUTHORIZED TO DISCONTINUE PERIPHERAL LIMB VEIN IVs ONLY.

(4) Specific documentation includes:

(a) Type of clinician-controlled IV solution

(b) Type of patient-controlled IV solution

(c) Type of patient-controlled IV medication

(d) Volume administered

(e) Complications encountered
24. MEDEVAC UTILIZATION

a) PURPOSE
Summarize Medevac Utilization Protocol indications, contraindications, principles for consideration of medevac request, medevac request process, standardized medevac request dataset, optimal landing zone setup, and safety recommendations when interacting with helicopters.

b) INDICATIONS FOR “MEDEVAC REQUEST”
The following indications must meet the specific criteria of the indicated protocol(s):
1) Trauma Category Alpha, Bravo, Charlie*, Delta*
2) Specialty Category
 (a) Burn
 (b) Hand*
 (c) Eye
 (d) Head
 (e) Spinal
3) Medical Category
 (a) Stroke
 (b) STEMI
 (c) Hyperbaric (CO, Toxic Inhalation, or SCUBA)
4) Consult-Approved Critical/Unstable (Time-critical illness or disease requiring specialized care)*

All of the above requests containing an asterisk (*) (adult or pediatric) require acceptance at the Trauma/Medical/Specialty Center for medevac authorization before SYSCOM can dispatch the helicopter.

c) PRINCIPLES FOR CONSIDERATION OF MEDEVAC TRANSPORT MEETING ABOVE INDICATIONS:
1) Priority 1 Patients (critically ill or injured person requiring immediate attention: unstable patients with life-threatening injury or illness)
 (a) Consider air transportation if the patient will ARRIVE at the appropriate receiving facility more quickly than could be accomplished by ground transportation.
 (b) The clinician should consider all of the following:
 (i) Time for helicopter response
 (ii) Patient turnover (loading time)
 (iii) Flight time to appropriate facility
 (iv) Weather conditions
2) Priority 2 Patients (less serious condition yet potentially life-threatening injury or illness, requiring emergency medical attention but not immediately endangering the patient’s life)
 Consider medevac transport if drive time is greater than 30 minutes.
Special Consideration:
Consider medevac transport if ground transport greater than 60 minutes to a trauma or specialty center would deplete limited EMS resources in the community.

d) CONTRAINDICATION FOR MEDEVAC REQUEST
EMS/DNR-B or MOLST B patients are not candidates for field medevac transport.

ALL REQUESTS FOR SCENE HELICOPTER TRANSPORTS SHALL BE MADE THROUGH SYSCOM.

e) FORMAL REQUEST PROCESS
The Systems Communications Center (SYSCOM) at MIEMSS serves as the communications center for the dispatching and management of Maryland’s public safety helicopter resources. This mission is accomplished through the partnership between jurisdictional 9-1-1 call-centers and SYSCOM operations at MIEMSS. All helicopter requests must be routed through SYSCOM. The Medevac Request Data form is designed to provide a consistent standard by which SYSCOM receives “request” information. Considering the variety in the types of requests received by SYSCOM (e.g., medevac, search-and-rescue, law enforcement tracking) the information requested will vary, depending on the nature of the request. The county communications centers and the EMS clinicians that make the request should be familiar with the Medevac Data Request form to provide essential data to SYSCOM for prompt dispatch of the requested helicopter support.

EMS clinician and 9-1-1 center medevac request process:
(1) Decision made to request medevac based on indication and principles above (if 9-1-1 center has enough information from phone interrogation of call, and trauma indications meet Trauma Decision Tree Category Alpha or Bravo, the 9-1-1 center operator does not have to wait for EMS clinician to arrive on scene to make medevac request).
(2) If indicated, consult with trauma/specialty center for physician authorization to use medevac for transport and acceptance of the patient.
(3) Essential information gathered to complete the Medevac Data Request form (most of this is handled by 9-1-1 center).
(4) Contact SYSCOM for formal medevac request.
(5) Select and secure landing zone following optimal landing zone setup and safety tips.
Medevac Data Request Form

Maryland Helicopter Dispatch Request

<table>
<thead>
<tr>
<th>1</th>
<th>Identify Call Origin & Operator ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Identify Request Type: Medevac, Search & Rescue, Airborne Law Enforcement</td>
</tr>
<tr>
<td>3</td>
<td>Jurisdictional Incident Number & 9-1-1 Dispatch Time</td>
</tr>
</tbody>
</table>

Medevac Dispatch

<table>
<thead>
<tr>
<th>1</th>
<th>Incident Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Incident Location: Community & Site</td>
</tr>
<tr>
<td>3</td>
<td>Landing Zone</td>
</tr>
<tr>
<td>4</td>
<td>ADC Map Page/Grid OR Lat/Lon</td>
</tr>
<tr>
<td>5</td>
<td>Primary Condition</td>
</tr>
<tr>
<td>6</td>
<td>Severity, Category & Priority</td>
</tr>
<tr>
<td>7</td>
<td>Adult or Pediatric or Estimated Age?</td>
</tr>
<tr>
<td>8</td>
<td>Multiple Patients?</td>
</tr>
<tr>
<td>9</td>
<td>ALS Unit & LZ Contact Info</td>
</tr>
<tr>
<td>10</td>
<td>Additional Relevant Information</td>
</tr>
</tbody>
</table>

Search & Rescue Dispatch

<table>
<thead>
<tr>
<th>1</th>
<th>Incident Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Incident Location: Community & Site</td>
</tr>
<tr>
<td>3</td>
<td>ADC Map Grid OR Lat/Lon Info for LZ</td>
</tr>
<tr>
<td>4</td>
<td>Primary Target Description</td>
</tr>
<tr>
<td>5</td>
<td>Time Last Observed</td>
</tr>
<tr>
<td>6</td>
<td>Ground Contact Unit</td>
</tr>
<tr>
<td>7</td>
<td>Additional Relevant Information</td>
</tr>
</tbody>
</table>

Airborne Law Enforcement Dispatch

<table>
<thead>
<tr>
<th>1</th>
<th>Incident Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Incident Location: Community & Site</td>
</tr>
<tr>
<td>3</td>
<td>ADC Map Grid OR Lat/Lon Info for LZ</td>
</tr>
<tr>
<td>4</td>
<td>Primary Target</td>
</tr>
<tr>
<td>5</td>
<td>Time Last Observed</td>
</tr>
<tr>
<td>6</td>
<td>Ground Contact Unit</td>
</tr>
<tr>
<td>7</td>
<td>Additional Relevant Information</td>
</tr>
</tbody>
</table>
f) HELICOPTER SAFETY

(1) OPTIMAL LANDING ZONE (LZ) SETUP

(a) 150 x 150-foot area close to the incident scene and free from obstructions is the minimum required, with a 175 x 175-foot area preferred.
 (In mass casualty incident, identify a large enough area to land multiple large helicopters.)
(b) The landing zone should be a flat surface that is firm, free of overhead obstructions, and free of any debris that can blow up into the rotor system. The maximum allowable slope is 10 degrees.
(c) Obstacles such as wires, poles, signs, etc. can be difficult to see from the aircraft. If wires are present at or near the scene, this information must be relayed to the flight crew prior to landing.
(d) Advise the flight crew on overhead radio contact if there are any obstructions in the area, obstructions at the edge of the LZ, or any obstructions in-line with the departure or approach path.
(e) The landing zone will not be located near fixed objects that may be susceptible to wind damage or unsecured objects (e.g., patio furniture, small boats) that may become airborne as the AW-139 aircraft produces a significant amount of main and tail rotor wash.
(f) If the roadway is too narrow, or numerous trees or other obstacles are present, another area must be selected as an alternate LZ and checked for obstacles and other unsafe conditions. After the LZ Officer has evaluated all areas, the best unobstructed landing site must be secured and the flight crew advised of any unsafe conditions they may encounter during the landing.

NOTE: In determining landing zones, be aware that helicopter take-offs and landings can be done in a vertical manner; however, these landings limit the pilot’s visibility of the LZ. Increased power requirements on the helicopter may eliminate land-back areas should an engine malfunction occur, making the approach slower and causing extended periods of rotor wash.

(2) ADDITIONAL LANDING ZONE TIPS

(a) The LZ Officer should walk the area on both sides of the LZ and check for hazards. During night operations, walk the LZ with a flashlight that is directed up and down to detect wires in and around the LZ.
(b) 45-Degree Test—The LZ Officer should stand in the middle of the LZ with one arm extended at a 45-degree angle in front of him/her. Any objects at or above this line are obstacles and need to be reported to the incoming aircraft. This test is done for the full 360 degrees.
(c) Do not recommend landing zones that contain loose material such as gravel. The rotor wash will cause stones or gravel to become airborne, striking personnel and/or damaging vehicles.
(d) When a roadway is to be used as an LZ, all traffic must be stopped in both directions of the roadway, even on multi-lane highways or interstates.

(e) The LZ Officer will ensure that enough personnel is available to prevent any breach of LZ security by pedestrians while the helicopter is approaching, on the ground, or while departing. Failure to do so may cause injuries and/or delay patient transport.

(f) Do not allow traffic to use the roadway until after the aircraft has departed. Traffic will be stopped at least 200 feet in both directions from the landing zone.

(g) Do not use flares or cones to mark the landing zone: they will become airborne during the landing. (Weighted cones/lights that are designed for aircraft operations are generally acceptable.)

(h) The flightcrew is the final authority when selecting an LZ. On some occasions, the flightcrew may not choose to utilize the ground personnel’s suggested LZ and choose an alternate LZ. This decision is usually based on information that is unknown to the ground personnel (e.g., wind, aircraft performance limitations).

(3) APPROACHING THE AIRCRAFT

Personnel should only approach MSP aircraft under the following conditions:

(a) Hearing and eye protection shall be utilized at all times when approaching the aircraft.

(b) Only when accompanied by an MSP flight crew member to the aircraft Response personnel are usually limited to four when loading patients. The crew will provide additional guidance prior to these personnel approaching the aircraft.

(c) In an emergency situation when it becomes necessary to render assistance or rescue occupants of the helicopter. In such cases: **DO NOT APPROACH THE AIRCRAFT UNLESS THE MAIN ROTOR HAS STOPPED!**

(d) Only approach the aircraft from the Safe Zone (see diagram).
(i) Never approach the aircraft from the rear areas due to the hazards existing from the tail rotor.

REMAIN CLEAR OF THE REAR AND TAIL ROTOR AT ALL TIMES!

(ii) If it becomes necessary to go from one side of the aircraft to the other, this will be done by walking around the front of the aircraft; however, do not walk under the rotor blades.

(iii) Personnel shall not wear hats and loose clothing when approaching the aircraft. Do not lift anything above shoulder height (e.g., IV bags).

(e) If the aircraft has landed on a slope or hill, care must be taken when approaching the aircraft from the downhill side. Uphill side approaches should be avoided, as the main rotor blade is spinning and is lower to the ground on one side of the aircraft. The Trooper/Flight Paramedic will provide additional guidance in this situation.

(f) Never bring the patient to the aircraft prior to advising the Trooper/Flight Paramedic of the patient’s information. Very high noise levels found in the general proximity of the aircraft make communication and patient turnover impossible.

(g) If debris gets in the eyes and it impairs the vision, do not continue to approach or egress from the aircraft. Personnel will immediately “take a knee,” and the Trooper/Flight Paramedic will provide assistance.

(4) MISCELLANEOUS SAFETY TIPS

(a) **Aircraft Doors**

 Personnel should not attempt to open or close any aircraft doors. If a person is in the aircraft, they should remain inside until the flight crew member opens the door, thus preventing damage to the door and greatly reducing the risk of an aircraft door opening inadvertently in flight.

(b) **Vehicles**

 (i) No vehicles or personnel shall be permitted within 200 feet of the aircraft.

 (ii) Do not direct spotlights onto the landing area or at the aircraft, but keep vehicle’s emergency lights displayed until the aircraft is overhead. Once the LZ has been confirmed and verified by the flight crew, vehicle lighting can be reduced to running lights or parking lights for night vision purposes.
25. PATIENT-INITIATED REFUSAL OF EMS

a) Initiate General Patient Care.
 For the purposes of this protocol, a patient is defined as any person encountered by in-service rescue or emergency medical personnel with an actual or potential injury or medical problem. (The term “patient,” in this protocol only, refers both to patients and to persons who are potential patients. This protocol is not intended to determine the legal status of any person, the establishment of a clinician-patient relationship, or a legal standard of care.)

A minor patient is defined as a patient who has not reached their 18th birthday and is not
 (1) Married, OR
 (2) Parent of a child, OR
 (3) Requesting:
 (a) Treatment for drug abuse or for alcoholism,
 (b) Treatment for Sexual Transmitted Infection (STI) or for contraception,
 (c) Treatment of injuries from alleged rape or sexual offense, OR
 (4) Living separate and apart from the minor’s parent, parents, or guardian, whether with or without consent of the minor’s parent, parents, or guardian, and is not self-supporting, regardless of the source of the minor’s income.
An authorized decision maker for minor patients is defined as an adult who
identifies themselves as the parent or guardian, or has written authorization for medical decision making or states that they have written authorization for medical decision making. Clinicians may request the parent or guardian to present identification and will document the name of the individual who identifies themselves as the decision maker.

IN CASES OF ALLEGED RAPE OR SEXUAL OFFENSE, LAW ENFORCEMENT OR SOCIAL SERVICES SHALL BE NOTIFIED.

b) These persons may have requested an EMS response or may have had an EMS response requested for them. Because of the hidden nature of some illnesses or injuries, an assessment must be offered and performed, to the extent permitted, on all patients. For patients initially refusing care, attempt to ask them, “Would you allow us to check you out and evaluate whether you are OK?”

IF THE AUTHORIZED DECISION MAKER REFUSES TO PERMIT THE EMS CLINICIAN TO EXAMINE A MINOR PATIENT TO DETERMINE THE SEVERITY OF THE ILLNESS OR INJURY, THEN CONSIDER CONTACTING LAW ENFORCEMENT FOR ASSISTANCE. CONSIDER CONSULTATION WITH PEDIATRIC BASE STATION.
c) Each patient’s assessment shall include:

(1) Visual assessment - injuries, responsiveness, level of consciousness, orientation, respiratory distress, gait, skin color, diaphoresis
(2) Primary survey - airway, breathing, circulation, and disability
(3) Vital signs - pulse, blood pressure, respiratory rate and effort, pulse oximeter when available
(4) Secondary survey - directed by the chief complaint
 (a) Medical calls - exam of lungs, heart, abdomen, and extremities. Blood glucose testing for patients with Diabetes Mellitus. Neurological exam for altered consciousness, syncope, or possible stroke.
 (b) Trauma calls - for patients meeting criteria in the Maryland Medical Protocols Trauma Decision Tree recommending transport to a Trauma Center: exam of neck and spine, neurological exam, palpation and auscultation of affected body regions (chest, abdomen, pelvis, extremities).
(5) Capability to make medical decisions (complete questions 1 through 4 on the Patient-Initiated Refusal of EMS form):
 (a) Disorientation to person, place, time, situation
 (b) Evidence of altered level of consciousness resulting from head trauma, medical illness, intoxication, or other cause
 (c) Evidence of impaired judgment from alcohol or drug ingestion
 (d) Language communication barriers were removed by assuring “language line” translation when indicated
 (e) The patient understands the nature of the illness

Management

(1) Patients at the scene of an emergency who meet criteria to allow self-determination shall be allowed to make decisions regarding their medical care, including refusal of evaluation, treatment, or transport. These criteria include:
 (a) Medical capacity to make decisions - the ability to understand and discuss and understanding of the nature and consequences of the medical care decision
 (b) Adult (18 years of age or greater)
 (c) Those patients who have not reached their 18th birthday and are:
 (i) Married, OR
 (ii) Parent of a child, OR
 (iii) Requesting:
 a. Treatment for drug abuse or for alcoholism,
 b. Treatment for STI or for contraception,
 c. Treatment of injuries from alleged rape or sexual offense, OR
(iv) Living separate and apart from the minor’s parent, parents, or guardian, whether with or without consent of the minor’s parent, parents, or guardian, and is self-supporting, regardless of the source of the minor’s income.

(d) A patient who has been evaluated by EMS clinicians as having ‘no’ answers to questions 1, 2, 3a, 3b, and 4 on the Patient-Initiated Refusal of EMS form shall be considered to be medically capable to make decisions regarding their own care.

(e) Patients with ‘no’ answers to questions 1, 2, 3a, 3b, and 4 on the Patient-Initiated Refusal of EMS form but one or more ‘yes’ answers to questions 5 through 8 (medical conditions) have a higher risk of medical illness. The EMS clinician should consider consulting medical direction if the patient does not wish transport. The purpose of the consultation is to obtain a “second opinion” with the goal of helping the patient realize the seriousness of their condition and accept transportation.

(f) If the EMS clinician is unsure whether the patient has adequate ability to make medical decisions, they should seek medical consultation.

(g) At any time the EMS clinician identifies patient conditions that indicate that the patient should be transported to a hospital, and the patient is refusing transport, then the clinician should seek medical consultation.

(2) Any person at the scene of an emergency requesting an EMS response, or for whom an EMS response was requested, and who is evaluated to have any one of the following conditions, shall be considered incapable of making medical decisions regarding care and shall be transported, with law enforcement involvement, to the closest appropriate medical facility for further evaluation:

(a) Continued altered mental status from any cause including altered vital signs, influence of drugs and/or alcohol, metabolic causes (CNS or hypoglycemia), head trauma, or dementia

(b) Attempted suicide, danger to self or others, or verbalizing suicidal intent

(c) Acting in an irrational manner, to the extent that a reasonable person would believe that the medical capacity to make decisions is impaired

(d) Judgment impaired by severe illness or injury to the extent that a reasonable and medically capable person would seek further medical care

(e) On an Emergency Petition

(3) Further care should be provided according to Maryland Medical Protocols, “III E. Behavioral Emergencies” or other protocol sections as appropriate, based on patient’s condition.

e) Base Station Hospital Physician Consultation
Patient refusals are one of the highest risk encounters in clinical EMS. Careful assessment, patient counseling, and appropriate base hospital physician consultation can decrease non-transport of high-risk refusals. Patients who meet any of the following criteria require Base Station hospital physician consultation:

1. The clinician is unsure if the patient is medically capable of refusing transport.
2. The clinician disagrees with the patient’s decision to refuse transport due to unstable vital signs, clinical factors uncovered by the assessment, or the clinician’s judgment that the patient may have a poor outcome if not transported.
3. The patient was involved in any mechanism included in the Trauma Decision Tree of the Maryland Medical Protocols that would recommend transportation to a Trauma Center.
4. Minor patients: No parent, guardian, or authorized decision maker is available or the clinician disagrees with decision made by the parent, guardian, or authorized decision maker.

For patients with significant past medical history, consider consultation with the specialty center that follows the patient if possible.

Patients who do not meet the criteria above but have one or more positive answers to questions 6 through 10 on the Patient-Initiated Refusal of EMS form may have a higher risk of illness. In these situations, clinicians shall consult with the Base Station hospital physician.

f) Documentation

1. Complete Section One of the Patient-Initiated Refusal of EMS form, documenting the patient’s medical decision-making capability and any “At-Risk” criteria.
2. Complete Section Two, which documents clinician assessment and actions.
3. Following patient counseling and Base Station hospital consultation, when indicated, complete Section Three: Initial Disposition, Interventions, and Final Disposition.
4. Have the patient and witness sign the refusal statement as determined by your jurisdiction.
5. Document your assessment, the care provided, elements of the refusal, medical decision-making capability, and “At-Risk” criteria on the jurisdiction’s documentation (Medical Incident Report, MAIS form, or jurisdictional equivalent.)
6. Submit copies of the Patient-Initiated Refusal of EMS form and the documentation form to the EMS Supervisor.
7. If the patient/authorized decision maker refuses to sign the refusal statement:
 a. Contact a supervisor.
 b. Explain the need for a signature and again attempt to have the patient sign the refusal statement.
 c. If not already done, have a witness sign the refusal statement.
 d. Transmit the patient’s unwillingness to sign the refusal statement on a recorded channel and document all steps taken to convince patient to sign.
Section One:
When encountering a patient who is attempting to refuse EMS treatment or transport, assess their condition and record whether the patient screening reveals any lack of medical decision-making capability (1, 2, 3a, 3b, and 4) or high risk criteria (5–8):

1. Disoriented to:
 Person? □ yes □ no
 Place? □ yes □ no
 Time? □ yes □ no
 Situation? □ yes □ no

2. Altered level of consciousness? □ yes □ no

3. Alcohol or drug ingestion by history or exam with:
 a. Slurred speech? □ yes □ no
 b. Unsteady gait? □ yes □ no

4. Patient does not understand the nature of illness and potential for bad outcome? □ yes □ no
4A. Judgment impaired by severe illness or injury? □ yes □ no

5. Abnormal vital signs
 For Adults
 Pulse greater than 120 or less than 60? □ yes □ no
 Systolic BP less than 90? □ yes □ no
 Respirations greater than 30 or less than 10? □ yes □ no
 For minor/pediatric patients
 Age inappropriate HR or □ yes □ no
 Age inappropriate RR or □ yes □ no
 Age inappropriate BP □ yes □ no

6. Serious chief complaint (chest pain, SOB, syncope) □ yes □ no
7. Head Injury with history of loss of consciousness? □ yes □ no
8. Significant MOI or high suspicion of injury □ yes □ no
9. For minor/pediatric patients: ALTE, significant past medical history, or suspected intentional injury □ yes □ no
10. Clinician impression is that the patient requires hospital evaluation □ yes □ no

Section Two:
For clinicians: Following your evaluation, document information and care below:

1. Did you perform an assessment (including exam) on this patient? □ yes □ no
 If yes to #1, skip to #3
2. If unable to examine, did you attempt vital signs? □ yes □ no
3. Did you attempt to convince the patient or guardian to accept transport? □ yes □ no
4. Did you contact medical direction for patient still refusing service? □ yes □ no
Section Three: (CHECK ALL THAT APPLY)

Initial Disposition:

- [] Patient refused exam
- [] Patient refused treatment
- [] Patient refused transport
- [] Patient accepted exam
- [] Patient accepted treatment
- [] Patient accepted transport
- [] ADM refused exam
- [] ADM refused treatment
- [] ADM refused transport

Interventions:

- [] Attempt to convince patient
- [] Attempt to convince family member/ADM
- [] Contact Medical Direction (Facility: ____________________________)
- [] Contact Law Enforcement
- [] None of the above available

Final Disposition:

- [] Patient refused exam
- [] Patient refused treatment
- [] Patient refused transport
- [] Patient accepted exam
- [] Patient accepted treatment
- [] Patient accepted transport
- [] ADM refused exam
- [] ADM refused treatment
- [] ADM refused transport

Section Four: (MUST COMPLETE)

Provide in the patient’s own words why they refused the above care/service:

Patient Refusal of EMS

I, ______________________, have been offered the following by ______________ (EMS Operational Program) but refuse (check all that apply):

- [] Examination
- [] Treatment
- [] Transport

Patient Name: ____________________________ Phone: ______________
Patient Address: __
Signature: __
Witness: ___

[] Patient [] Parent [] Guardian [] Authorized Decision Maker (ADM)

If you experience new symptoms or return of symptoms after this encounter, we recommend that you seek medical attention promptly.

Jurisdiction ______________________ Incident: ______________________ Date: __________
Unit #: ____________________________ Clinician Name/EID: ______________ Time: __________
26. PERIPHERAL IV ACCESS FOR CRT-(I) & PARAMEDIC, AND IV ACCESS OPTION FOR EMT APPROVED BY THE EMS OPERATIONAL PROGRAM

a) PURPOSE

IV access is an invasive skill reserved for ALS clinicians and “Program Approved Option” EMTs with IV Technician training. The purpose of establishing an IV line, or a saline-lock, is to provide direct venous access for the possible administration of fluids and ALS medications (ALS only), if necessary and appropriate.

b) INDICATIONS

1. See treatment protocols for initiation of IV.
2. If the protocol indicates to start an IV, the “Program Approved Option” EMT may initiate an IV or saline-lock, if appropriate.
3. Saline locks may be substituted for IV KVO anywhere in the protocol with the understanding that if the patient needs a fluid bolus or medication, the saline lock is converted to an IV of LR.
4. ALS clinicians, in the event of a life-threatening emergency (CRTs with medical consult) or cardiac arrest, may access indwelling or implanted, central or peripheral venous catheters for medication administration.
5. When a patient is a Hemophiliac A or B (Factor VIII or IX) and the family or patient states that the patient must have factor concentrate administered, the ALS clinician may assist the patient in the IV administration of the patient’s own factor concentrate (VIII or IX). Notify the receiving hospital of the administration of blood factor concentrate.
6. All ALS clinicians may access lower extremity IV sites. The CRT-(I) and paramedic should consider lower extremity IV sites prior to IO attempts (EMT-IV technicians may not access lower extremity IV sites).
7. The ALS clinician may establish a peripheral IV in a patient whose vasoactive medication has been interrupted due to a malfunctioning long-term access device that cannot be repaired by the home health caregiver. The ALS clinician can assist in reestablishment of an existing vasoactive infusion at the same dose or setting. Patient shall be transported to the nearest appropriate facility to access patient’s long-term device. When in doubt, obtain medical consultation.
8. Maximum 2,000 mL LR without medical consultation.
9. Second IV requires medical consultation except when initiating the Sepsis Protocol and for ALS clinicians who have Priority 1 patient. Initiation of the second IV shall not delay transport.
c) CONTRAINDICATIONS
 See treatment protocols.

d) POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
 See IV Maintenance Therapy for EMT.

e) PRECAUTIONS
 All sharps must be properly disposed of in an appropriate container.
27. PHYSICAL AND CHEMICAL RESTRAINTS

a) PURPOSE

To prevent harm to patient and/or others

b) INDICATIONS

(1) Patient restraints (physical and/or chemical) should be utilized only when necessary and only in situations where the patient is exhibiting behavior that the EMS clinician believes will present a danger to the patient or others.

(2) The procedure does apply to patients treated under implied consent.

c) PROCEDURE

(1) The physical restraint procedure applies to patients greater than 1 year of age.

(a) Ensure that the scene is safe.

(b) Ensure sufficient personnel are present to control the patient while restraining. USE POLICE ASSISTANCE WHENEVER AVAILABLE.

(c) Position the patient for safe transport:

PATIENT POSITIONING SHOULD BE MODIFIED WHEN RESTRaining PATients WITH LIMITED MOBILITY (E.G., CONFINED TO BED OR WHEELCHAIR). USE PASSIVE RESTRAINT AND PLACE PATIENTS WITH PREVIOUS INJURY OR PREEXISTING CONDITIONS, SUCH AS OSTEOPOROSIS OR CONTRACTURE, IN A NEUTRAL POSITION.

PATIENTS ARE NOT TO BE RESTRAINED IN A PRONE, HOBBLED, OR HOG-TIED POSITION. WHENEVER POSSIBLE, ALL PATIENTS WHO ARE PHYSICALLY RESTRAINED AND CONTINUE TO FIGHT THE RESTRRAINTS SHOULD BE CONSIDERED FOR CHEMICAL RESTRRAINT.

Method (Be prepared to logroll immediately in the event of vomiting.)

(i) Place patient face up or on their side, if at all possible.

(ii) Secure extremities:

For adults, use 4-point restraints (ideally with one arm up and the opposite arm down) or use a sheet to carefully wrap the patient before applying a Reeves-type stretcher. For patients 12 years and under, use 3-point restraints (two arms, one leg) or use a sheet to carefully wrap the patient before applying a Reeves-type stretcher.

IF POLICE HANDCUFFED THE PATIENT, JOINTLY WITH POLICE, REPOSITION THE PATIENT IN FACE-UP POSITION WITH HANDS ANTERIOR AND SECURED TO STRETCHER.

(iii) If necessary, utilize cervical-spine precautions to control violent head or body movements.

(iv) Place padding under patient’s head. Pad any other area needed to prevent the patient from further harming him or herself or restricting circulation.
(v) Secure the patient onto the stretcher for transport, using additional straps if necessary. Be prepared at all times to logroll, suction, and maintain airway.
(d) Monitor airway status continuously, utilize pulse oximetry when available, vital signs, and neurocirculatory status distal to restraints. Document findings every 15 minutes, along with reason for restraint.
(e) For interfacility transfers, obtain a written physician’s order for use of restraints.

(2) Chemical Restraint Procedure

BE SURE TO ASSESS FOR EVIDENCE OF TRAUMATIC OR MEDICAL CAUSES FOR PATIENT’S AGITATION. IF EXCITED DELIRIUM SYNDROME IS SUSPECTED, WITHHOLD HADOL AND REFER TO EXCITED DELIRIUM PROTOCOL.

(a) Prepare airway equipment, including suction, BVM, and intubation equipment.
(b) Adults
 (i) Administer combined medications of haloperidol and midazolam, which can be mixed in the same syringe. (If patient has head injury consider administration of only midazolam.)
 a. **Patient 18–69 years of age:**
 (i) Haloperidol 5 mg IM/IV and
 (ii) Midazolam 5 mg IM/IV (Paramedic may perform without consult)
 b. **Patient greater than 69 years of age:**
 (i) Haloperidol 2.5 mg IM/IV and
 (ii) Midazolam 2.5 mg IM/IV (paramedic may perform without consult)
 (iii) Repeat doses may be given with medical direction.
(c) Pediatric
 (i) Administer haloperidol only.
 a. **Less than 5 years of age is contraindicated.**
 b. **5–12 years of age**
 (i) Haloperidol 0.05 mg/kg IM/IV
 (ii) Max dose 2.5 mg
 c. **13 up to 18th birthday**
 Haloperidol 2.5–5 mg IM/IV
 (ii) Repeat doses may be given with medical direction.
(d) Establish IV access with LR, if appropriate.
(e) Use glucometer and treat accordingly.
(f) Monitor vital signs, EKG, and pulse oximetry.
(g) Be prepared to treat hypotension with fluid bolus.
(h) Treat acute dystonic or extrapyramidal reactions with Diphenhydramine
 Adult: 25–50 mg IV/IM; pediatrics 1 mg/kg SLOW IV/IO/IM; Maximum single dose 25 mg. Additional doses of diphenhydramine require medical consultation.
(i) Monitor airway status continuously, utilize pulse oximetry when available, vital signs, and neurocirculatory status distal to restraints. Document findings every 15 minutes, along with reason for restraint.

d) ADDITIONAL INFORMATION

(1) Physical-restraint guidelines:
 (a) Use the minimum restraint necessary to accomplish necessary patient care and ensure safe transportation (soft restraints may be sufficient in some cases). If law enforcement or additional personnel are needed, call for assistance prior to attempting restraint procedures. Do not endanger yourself or your crew.
 (b) Avoid placing restraints in such a way as to preclude evaluation of the patient’s medical status (airway, breathing, and circulation). Consider whether placement of restraints will interfere with necessary patient-care activities or will cause further harm.
 (c) Once restraints are placed, do not remove them until you arrive at the hospital unless there is a complication from their use. If at all possible, take extra personnel during transport to hospital to deal with potential complications.

(2) Chemical-restraint guidelines:
 Sedative agents may be used to provide a safe method of restraining violently combative patients who present a danger to themselves or others, and to prevent violently combative patients from further injury while secured with physical restraints.
28. NEUROPROTECTIVE INDUCED HYPOTHERMIA (THERAPEUTIC) AFTER CARDIAC ARREST - SCENE AND INTERFACILITY TRANSFER

a) indications:
Increased brain temperature contributes to ischemic brain damage in patients post-cardiac arrest. Studies have shown that lowering brain temperature, even by a few degrees, decreases ischemic brain damage. In studies of out-of-hospital cardiac arrest, induced hypothermia protocols have contributed to improved neurological outcomes. The initiating of hypothermia without the ability to continue the hypothermic intervention is detrimental.

b) patient inclusion criteria:
(1) 18 years of age or older
(2) Return of spontaneous circulation post-cardiac arrest
(3) Comatose (GCS less than 8) after return of spontaneous circulation
(4) Secured airway with adequate ventilation (intubation preferred; ventilate slowly at the rate of 10–12 per minute for target ETCO$_2$ of 35-40 mmHg) (NEW '20)
(5) Systolic Blood Pressure (SBP) can be maintained at 90 mmHg or greater spontaneously or with fluids and/or pressors. (Target is SBP greater than 110 or Mean Arterial Pressure (MAP) equal to or greater than 80)
(6) Destination hospital must have ability to continue hypothermic intervention.

c) patient exclusion criteria:
(1) Cardiac instability
 (a) Refractory or recurrent dysrhythmia
 (b) Inability to maintain SBP at least 90 mmHg (MAP greater than 80) despite use of fluids and pressors
(2) Active bleeding or history of coagulopathy or thrombocytopenia
 (Thrombolytic/Fibrinolytic therapy does not preclude use of hypothermia)
(3) Pregnancy
(4) Trauma patients
(5) Environmental hypothermia or initial temperature of 32°C

d) procedure:
(1) Institute cooling as early as possible. Core temperature goal is 33°C.
(2) Actively cool by applying ice/cold packs bilaterally to patient’s neck, axilla, and femoral groins.
 Reduce the covering on the patient while maintaining dignity.
(3) If patient begins shivering, administer midazolam
Adult: (Reduce the below IV/IO/IM by 50% for patients 69 years or older.)

(a) 0.1 mg/kg in 2 mg increments SLOW IVP over 1–2 minutes per increment with maximum single dose 5 mg.

(b) Additional doses to a maximum of 10 mg requires medical consultation for all clinicians.

(4) Consider turning on vehicle air conditioning to assist with cooling en route.

(5) Document initial GCS and pupillary response.

(6) Transport to a Cardiac Interventional Center (by air or ground) that can maintain the hypothermic intervention.

(7) Interfacility maintenance of hypothermic interventions techniques and monitoring of core temperature by Specialty Care Transport team must be maintained from the sending hospital to the destination hospital with either commercial ambulance equipment or sending hospital resources. Vital signs will be documented every 15 minutes with core temperature. Do not allow core temperature to drop below 33°C.
29. 12-LEAD ELECTROCARDIOGRAM

a) PURPOSE

Coronary heart disease is the single largest cause of death in US men and women. Early identification and treatment of patients with acute myocardial infarction (AMI) has proven to reduce myocardial damage and decrease morbidity and mortality. Clinicians should be aware of both typical and atypical presentations.

b) INDICATIONS

(1) Chest pain that may radiate to the arm, shoulders, jaw, or back. Generally described as a crushing pain or toothache. May be accompanied by shortness of breath, sweating, nausea, or vomiting.
(2) Chest discomfort. Some heart attacks involve discomfort in the center of the chest that lasts for more than a few minutes or that goes away and comes back. This discomfort can feel like uncomfortable pressure, squeezing, or fullness.
(3) Discomfort in other areas of the upper body. Symptoms can include discomfort in one or both arms or in the back, neck, jaw, or stomach.
(4) Shortness of breath. This symptom often accompanies chest discomfort. However, it can also occur prior to the chest discomfort.
(5) Other anginal equivalents, such as: unexplained diaphoresis, nausea, lightheadedness, syncope, or a sense of impending doom. (NEW ’20)
(6) Post cardiac arrest with ROSC.

c) PROCEDURE

(1) Position patient.
(2) Place chest and limb leads.
(3) Acquire 12-lead (15-lead, if trained) and document the patient’s last name, first initial, age, and gender. These identifiers should be on the transmission copy (if able to transmit) and shall be on the delivered printed copy.
(4) Continue patient care.

EARLY ASSESSMENT OF PATIENTS WITH ACS LEADS TO EARLY IDENTIFICATION OF A STEMI AND INFLUENCES DOWNSTREAM CARE AND PATIENT DESTINATION. 12-LEAD EKG SHOULD BE ACQUIRED WITHIN 10 MINUTES OF CONTACT WITH AN EKG-CAPABLE CLINICIAN. (NEW ’20)

SHOULD AN ALS CLINICIAN INITIATE TRANSFER OF CARE/RENDEZVOUS AND TRANSITION OF PATIENT CARE ALS TO BLS, IT SHALL BE IMPORTED INTO THE PATIENT CARE REPORT AND A COPY SHALL BE SENT WITH THE BLS UNIT TO THE RECEIVING FACILITY. (NEW ’20)
30. MULTIPLE CASUALTY INCIDENT/UNUSUAL EVENT

A Multi-Casualty Incident (MCI) or Unusual Event is any event where the number of injured persons exceeds the normal capabilities of the EMS Operational Program in whose jurisdiction the event takes place. Due to the size of the incident, the responding EMS Operational Program may require additional resources and/or must distribute patients to multiple hospitals.

Local EMS Operational programs should have a plan or operational procedures that address response to multiple patient incidents or unusual events. This protocol does not supersede those plans. There are some general practices and procedures that must be followed to ensure the EMS system can be prepared to respond appropriately to support a local response.

ALERT: THIS PROTOCOL IS SIMPLY A LIST OF REQUIRED TASKS IN THE EVENT OF AN UNUSUAL EVENT. IT IS NOT ALL-INCLUSIVE. ALL CLINICIANS ARE ENCOURAGED TO REVIEW LOCAL EMERGENCY RESPONSE PLANS, THE MARYLAND TRIAGE SYSTEM TRAINING PROGRAM, START/JUMPSTART, AND NIMS PRACTICES AND PROCEDURES ON AT LEAST AN ANNUAL BASIS.

Procedure

a) Assess scene and recognize that the incident is an MCI or Unusual Event. The definition of MCI or Unusual Event for the purposes of this protocol is an incident that causes more than 5 patient encounters or that involves unusual circumstances that suggest it could place an extraordinary strain on EMS or health care resources. The following events are examples of an MCI or Unusual Event.

1. More than five patients from one or related incidents
2. Multi-patient events that require specialized rescue
3. Three or more immediate (Priority 1) patients
4. Multiple pediatric patients requiring specialty resources
5. More than one burn patient meeting burn center referral criteria
6. Use of more than two medevac helicopters
7. Use of Medical Ambulance Bus (MAB)
8. Multiple patients with unusual signs and symptoms
9. Unresolved WMD related activity that could result in multiple patients (active shooter, bomb threat, intentional WMD agent release, etc.)
10. Decontamination of more than 5 patients resulting in at least one transport
11. Unresolved hazardous material incident that has the potential to affect multiple patients
12. Evacuation of a licensed health care facility or housing complex for individuals requiring special assistance

b) Notify EMRC or the Regional EMRC as soon as the incident is recognized to
be an MCI or Unusual Event. Use the specific terms “MCI” or "Unusual Event" when communicating with EMRC to be clear this protocol is being enacted. This should be done as early in the incident as possible when there is a strong suspicion that such an event has occurred so that EMRC may begin to notify hospitals and response partners of the incident. Responding units can request their dispatchers notify EMRC before the scene is fully assessed if there is reasonable information to suggest that the incident meets the criteria above. As soon as available, the following information should be relayed to EMRC.

1. Type and general description of the incident
2. General location or address of the incident
3. Age range of patients
4. Estimated number of patients by priority
5. Approximate number of patients involved
6. Any hazardous agents involved

c) Initiate the incident command structure according to local SOPs and/or the National Incident Management System. Update EMRC with more details about the incident as they become available.

d) Consider utilization of the MCI Communications Protocol (Section II.G.8)

e) Triage patients using the START/JumpSTART methods (Section II.D.7.e).

1. Identify the patient's triage category by utilizing the appropriately colored triage ribbon and securely attach a MIEMSS-approved Triage Tag.

f) Do not delay transport of patients for extensive patient care procedures. Provide only the care required to sustain life and limb during transport to the hospital.

g) Track the care, movement, and disposition of EVERY patient utilizing the locally approved triage/treatment/transport logs. Patient information should be written on the triage tag. (NEW ‘20)

h) Consider the need for and request specialty resources through the local dispatch center and/or emergency management as per local procedures. These may include,

1. Mass Casualty Support Units (MCSU) – (Medical Supply Caches)
2. Medical Ambulance Buses
3. CHEMPACK (Organophosphate antidotes - contact EMRC)
4. Ambulance Strike Teams or EMS Taskforces
5. Shock Trauma Go-Team

i) The Transportation Group Supervisor and Medical Communications Coordina-
tor responsibilities should be assigned as early as possible. They are the critical link to EMRC, hospitals, and the health care system. Their duties include:

(1) Establish a final checkpoint through which all transport units MUST pass to ensure accountability of all patients.

(2) EMRC will have notified hospitals and acquired their bed availability based on the information originally received and will transmit that information to the scene when requested.

(3) Coordinate through EMRC the patient destination, and communicate the number of patients, general illnesses, ages, and triage category on each transport unit as they leave the scene to the receiving facilities.

(4) If a central point of contact cannot be established, individual transport units MUST communicate the above information individually through EMRC to the receiving hospitals during transport. Those units must announce that they are associated with the MCI or Unusual Event.

j) Coordinate with law enforcement and, if requested, assist the Coroner or Medical Examiner with identification and disposition of deceased casualties.

k) After the last patient has been transported, notify 9-1-1 dispatch center and EMRC that last patient has been transported. Demobilize scene, stand down or release resources dedicated to incident, and complete appropriate documentation. Cooperate with local officials, EMRC, hospitals, and emergency management to complete a final accounting of the disposition of all the patients.
31. POTENTIALLY VOLATILE ENVIRONMENTS WITH LIFE-SUSTAINING INTERVENTIONS

a) BACKGROUND
(1) A review of past active assailant incidents has shown that the conventional prehospital practice of not entering the scene until it is deemed safe by law enforcement (LE) has been associated with additional loss of life.
(2) This protocol is designed to be all-hazards in nature. It is meant to provide a clinical concept of operations that empowers trained and equipped, but not necessarily tactical, EMS prehospital clinicians, to access casualties and expedite life-sustaining interventions closer to the point and time of injury. For active assailant and other LE-related incidents, EMS clinicians shall be under LE escort. EMS clinicians shall use appropriate personal protective equipment as defined by local jurisdiction.
(a) Examples of such potentially volatile environments include, but are not limited to:
 (i) Active assailant (active shooter/IED) situations
 (ii) Post-blast detonations
 (iii) Intentional release of a chemical agent
 (iv) Industrial accident/explosion
 (v) Hazardous materials incident
 (vi) Structural collapse/urban search and rescue situations
 (vii) Transportation mishaps with limited scene access
 (viii) In the immediate aftermath of a natural disaster such as a tornado

b) INTRODUCTION
(1) This protocol provides guidelines for the type of intervention and care that should be rendered at various proximities to a threat in a potentially volatile environment.
(2) By definition, potentially volatile environments are dynamic in nature. Scene conditions may change and emergent evacuation of responders and patients may interfere with the delivery of interventions described in this protocol.

c) INDICATIONS
(1) This protocol does not replace or supersede the general patient care practices in The Maryland Medical Protocols for Emergency Medical Services, which are still to be followed once the concern of active threat has been mitigated.
(2) Use of this protocol is an acknowledgement by the EMS clinician that the situation is:
 (a) Unique, austere, and different than the conventional environment of care in which EMS medicine is usually rendered AND
 (b) The application of standard prehospital emergency practices could unnecessarily jeopardize the safety of the patient and/or medical clinician.
(3) An active assailant incident or Potentially Volatile Environments with Life-Sustaining Interventions (PVE/LSI) Protocol is declared.
d) CONTRAINDICATIONS
(1) Absent the presence of perceived or actual threat, standard general patient care practices should be followed.

e) ZONES OF CARE/OPERATIONS
(1) The zones described below are intended to standardize the terminology used by responding emergency medical clinicians in Maryland and to establish a common understanding of the interventions to be performed within each zone.

(2) Hot Zone (Direct Threat): (Integrated Tactical EMS) Operational area with a direct and immediate threat to personal safety or health
(a) The overarching priority in the Hot Zone is mitigation of active threat. Medical care is a secondary function to threat mitigation.
(b) Medical clinicians must be an integrated tactical medic (i.e., TEMS) to operate in this environment. Medical priorities are to prevent casualties and responders from sustaining additional injuries and include prompt evacuation to a more secure zone.
 (i) If at all possible, casualties should self-evacuate.
 (ii) Goals of care include keeping the response team engaged in neutralizing the threat, minimizing public harm, and controlling life-threatening extremity hemorrhage.
 a. Control of severe hemorrhage in the direct threat environment is best accomplished with commercially available tourniquets.
 b. Tourniquet should be placed as high up on the limb as possible without taking the time to expose the area.
 c. For full or partial amputation, immediately place a tourniquet if possible.
 d. Cardiopulmonary resuscitation (CPR) is not indicated in this environment.
 (iii) In circumstances of chemical agent exposure, administration of Nerve Agent Antidote Kits (NAAK/MARK-1) might be warranted if available.
(3) **Warm Zone (Indirect Threat):** (Limited LSI) Area with a potential threat to personal safety or health

(a) **Evacuation of patients to a completely safe area is the primary objective of care in this area.** The following care guidance is dependent on the availability of equipment, supplies, and the appropriate level clinicians. Extrication should NOT be delayed to provide advanced or involved treatment measures.

(i) The Warm Zone typically exists between the Hot Zone and Cold Zone, but is not geographic and depends on the evolving situation.

(ii) Responders must remain cognizant that scene security can change instantly.

(iii) A focused and deliberate approach to providing patient care should occur.

(iv) The potential benefits of providing medical care in these zones must outweigh the risks of the ongoing tactical operation and/or delaying opportunity to evacuate the patient.

(v) Care in the Warm Zone typically occurs at or near the point of injury once scene stabilizing measures have occurred. Care may also take place at a casualty collection point (CCP).

(vi) A CCP is a location concealed and covered from immediate threat where victims can be assembled for movement from areas of risk to the triage/treatment area. Multiple CCPs may be required, which may be located in the Warm or Cold Zone. CCPs should be established and locations communicated as early as possible through operations to ALL responders.

(vii) If possible, an abbreviated triage system should be set up to identify the priority for the extrication of patients. The use of ribbons or markers to clearly identify immediate and delayed (red and yellow, respectively) patients is highly recommended. Deceased individuals should also be labeled/tagged appropriately to prevent repeat assessments by multiple clinicians.

(viii) Medical care in the Warm Zone should be limited to essential interventions only and is guided by the mnemonic **“MARCHED”**

a. **M – Massive Hemorrhage Control**

 i. Massive hemorrhage remains the greatest threat to life in most trauma patients. Attaining hemorrhage control is the top priority.

 ii. **Tourniquets remain the preferred means of hemorrhage control for life-threatening bleeding in this environment.**
1. If a tourniquet was applied in the Hot Zone, it should be reassessed.
2. Tourniquets applied over clothing are not as effective and may need to be adjusted.
3. Tourniquets should only be discontinued by an appropriately trained ALS clinician in consultation with medical control.
4. Other methods of hemorrhage control include deep wound packing with either sterile gauze or hemostatic impregnated gauze.
5. Vascular injuries in the neck, groin, and axilla (i.e., junctional zones) are not amenable to traditional extremity tourniquets. In addition, effective pressure dressings are often extremely difficult to apply. Hemostatic impregnated dressings with direct pressure (minimum 5 minutes with continuous pressure is preferred) have shown useful in such situations.

(b) A – Airway management
 (i) Patients in the Warm Zone with airway issues are high priority for evacuation due to their often intense resource requirements.
 (ii) Consider applying oxygen if available and indicated.
 (iii) Unconscious casualty without airway obstruction:
 a. Chin lift or jaw thrust maneuver
 b. Nasopharyngeal airway
 c. Place casualty in the recovery position
 (iv) Casualty with airway obstruction or impending airway obstruction:
 a. Chin lift or jaw thrust maneuver
 b. Nasopharyngeal airway
 c. Allow casualty to assume position that best protects the airway, including sitting up or leaning forward
 d. Place unconscious casualty in the recovery position
 (v) If previous measures unsuccessful, if time and resources permit, consider per protocol:
 a. Supraglottic Devices (e.g., King LT™, EASYTube®, or Combitube™).
 b. Oro/nasotracheal intubation
 c. Surgical cricothyroidotomy
(c) R – Respirations
 (i) The chest/upper abdomen should be assessed for any evidence of an open chest wound and an occlusive dressing should be applied accordingly.
 (ii) Tension pneumothorax remains a significant cause of preventable death in trauma patients.
 a. In suboptimal environments that interfere with complete physical assessment, any patient with significant blunt or penetrating chest trauma who displays dyspnea should be treated as a developing tension pneumothorax and receive needle decompression, if appropriate.
 b. To be effective, needle decompression needs to be performed using at least a 3.25 inch, 14g needle/catheter or needle decompression thoracostomy kit.

(d) C – Circulation
 (i) In general, healthy adult trauma patients with a radial pulse and normal mentation do not need IV therapy in the Warm Zone.
 (ii) Patients with evidence of hypotension:
 a. If the patient displays signs of a closed head injury, IV fluid therapy is indicated to maintain at least a radial pulse or SBP of at least 90 mmHg.
 b. Patients in hypovolemic shock should receive a one-time 500 mL bolus of IV fluid.
 (iii) Patients in traumatic cardiac arrest should be considered deceased and no CPR should be performed in this zone.

(e) H – Hypothermia
 (i) Hypothermia in trauma patients has been associated with increased mortality. Hypothermia is easier to prevent than treat.
 a. Patients should be moved to a warmed location if possible.
 b. Efforts should be made to minimize heat loss.

(f) E – Everything else
 (i) Consider Mark I/DuoDote® for suspected organophosphate/nerve agent exposure.
 (ii) Dependent upon resource availability, burns, eye injuries, and acute pain should be managed per The Maryland Medical Protocols for Emergency Medical Services.

(g) D – Documentation
 (i) Key findings and interventions should be conveyed to the next phase of care.
(4) **Cold Zone:** (Traditional Patient Care Protocols) Area surrounding the Warm Zone. Responders can operate without concern of danger or threat to personal safety or health.

(a) Casualties are moved from the Warm Zone to the Cold Zone by way of an evacuation corridor(s).

(i) **Evacuation Corridor:** An area transitioning between the Warm and Cold Zone that is secured from immediate threat and allows for a mitigated risk in transporting victims from the CCP to the triage/treatment area beyond the outer perimeter.

(b) Once in the Cold Zone, casualties will require re-triage, particularly assessing for the development of a life-threatening condition and effects of Warm Zone therapy.

(i) If massive hemorrhage has not been addressed or has been ineffectively managed, it should be immediately readdressed with strategies mentioned above.

(c) Patients should be triaged and transported per standard practices.

(d) Medical care in the Cold Zone should be dictated by resource availability and, when possible, equate to the general patient care standards in *The Maryland Medical Protocols for Emergency Medical Services*.

(e) CPR may have a larger role during the evacuation phase especially for patients with electrocution, hypothermia, non-traumatic arrest, or near drowning; however, it is still casualty count/resource dependent.
32. EMERGING INFECTIOUS DISEASE

1. Inclusion Criteria
 An emerging infectious disease (EID) is an infectious disease for which incidence in humans has increased in the past two decades or threatens to increase in the near future. These diseases, which respect no national boundaries, include
 a) New infections resulting from changes or evolution of existing organisms
 b) Known infections spreading to new geographic areas or populations
 c) Previously unrecognized infections appearing in areas undergoing ecologic transformation
 d) Old infections reemerging as a result of antimicrobial resistance in known agents or breakdowns in public health measures.

The most recent example is Ebola Viral Disease (EVD). EIDs that meet this protocol will be posted on the MIEMSS website under the Infectious Disease Tab. Seasonal influenza is not considered an EID, but some of the same principles of infection control may apply to the more common infectious diseases.

e) Signs and Symptoms of an EID are based on specific case definitions for the disease:
 (1) EVD case definition includes:
 Travel history or exposure and a set of signs and symptoms that are included in the case definition, which has evolved over time.
 (2) Other future EID diseases may vary in their signs and symptoms, and could include:
 (a) Respiratory congestion
 (b) Sneezing/coughing
 (c) Nausea/vomiting
 (d) Skin rashes, hives, or “poxes”
 (e) Swollen lymph nodes
 (f) General malaise
 (g) Loss of appetite
 (h) Hemorrhage from mucosal membranes
 (i) Descending neurological deficits

f) Case Definition
 As EIDs become more prevalent, the Centers for Disease Control and Prevention (CDC) typically publish a description of each disease, which is utilized to determine whether to include or exclude a Patient Under Investigation (PUI) for specific testing or treatment and specific isolation or quarantine measures. These case definitions will be posted on the MIEMSS website and include specific guidance on the identification, treatment, and appropriate transport of these patients and the appropriate use of PPE.

g) Modes of transmission
 (1) In direct transmission, an infectious agent is transferred from a reservoir to a susceptible host by direct contact or droplet spread.
(a) Direct contact occurs through skin-to-skin contact, kissing, and sexual intercourse. Direct contact also refers to contact with soil or vegetation harboring infectious organisms.

(b) Droplet spread refers to spray with relatively large, short-range aerosols produced by sneezing, coughing, or even talking. Droplet spread is classified as direct because transmission is by direct spray over a few feet, before the droplets fall to the ground.

(2) Indirect transmission refers to the transfer of an infectious agent from a reservoir to a host by suspended air particles, inanimate objects (vehicles), or animate intermediaries (vectors).

(a) Airborne transmission occurs when infectious agents are carried by dust or droplet nuclei suspended in air. Airborne dust includes material that has settled on surfaces and become re-suspended by air currents as well as infectious particles blown from the soil by the wind. In contrast to droplets that fall to the ground within a few feet, droplet nuclei may remain suspended in the air for long periods of time and may be blown over great distances.

(b) Vehicles that may indirectly transmit an infectious agent include food, water, biologic products (blood), and fomites (inanimate objects such as handkerchiefs, bedding, or surgical scalpels).

(c) Vectors such as mosquitoes, fleas, and ticks may carry an infectious agent through purely mechanical means or may support growth or changes in the agent.

2. Treatment
 a) If the presence of an EID at a scene is known prior to entering, don the appropriate PPE and limit entry into the scene to essential personnel only. If an EID is discovered during assessment, immediately don the appropriate PPE, clear the scene of non-essential personnel and initiate the recommended decontamination procedures.

 b) Initiate General Patient Care.

 c) Treat the patient according to the signs and symptoms presented and according to the MIEMSS guidance for the specific EID. Procedures that increase risk of distributing fluids or secretions should be limited to those absolutely necessary to maintain life and provide the patient with a reasonable level of comfort.

 d) Contain any bodily fluids or respiratory excretions prior to transporting the patient. A SURGICAL mask may be placed on the patient to limit respiratory droplet aerosolization.

 N-95 SHOULD NEVER BE PLACED ON A PATIENT AS THEY RESTRICT THE EXCHANGE OF RESPIRATORY GASES AND TYPICALLY HAVE A ONE-WAY EXPIRATORY VALVE THAT ALLOWS DROPLETS TO BE AEROSOLIZED UPON EXPIRATION DEFEATING THE PURPOSE OF PLACING A MASK ON THE PATIENT.

 e) Transport the patient to the appropriate hospital.

 Hospitals have been categorized into three levels based on their capabilities to
assess and treat PUIs for designated EIDs. A list of designated EIDs will be published on the MIEMSS website.

(1) Frontline Hospitals (MDH designated) – All hospitals with emergency departments must have the capability to accept, identify, and isolate a PUI for a designated EID, then follow the approved procedures to notify the local health department to arrange for transfer to an Assessment Hospital. These patients will typically be transferred within 24 hours.

(2) Assessment Hospitals (MDH designated) – A facility that has the capability to receive, isolate, and provide care for a patient while testing is completed to confirm or deny the diagnosis of the suspected EID. The patient will remain at that hospital for 4 to 5 days until the patient is discharged or transfer to an designated Treatment Hospital

(3) Treatment Hospitals (MDH designated) – A facility assessed by the CDC to have the capability to admit and provide comprehensive care for and manage a patient with a confirmed designated EID, until the patient is no longer ill or has died.

f) Transport from the scene
PUIs at a residence should be transported directly to an Assessment Hospital unless total transport time is no longer than 45 minutes greater than transport to the nearest Frontline Hospital ED. If transport time is longer than 45 minutes greater than transport to the nearest Frontline Hospital ED, the patient must be transported to the closest appropriate Frontline Hospital. Priority 1 and Priority 2 patients with unresolved symptoms that cannot be managed outside the hospital should be taken to the closest Frontline Hospital. Receiving hospital notification of all suspected PUI patients should be done as early as possible to allow for hospital staff to prepare. Helicopter transport NOT indicated for the PUI patient

g) Transport of a health department monitored patient
Individuals who were exposed and have some risk of contracting the disease may be monitored or even quarantined by the health department. MIEMSS will be notified by MDH if these patients become ill and require transportation by EMS to hospitals and will contact the local jurisdictional or waivered commercial EMS Operational Program to arrange that transport. DHMH will determine the destination hospital.

h) Interfacility Transfer
Transfers between hospitals will be completed by EMSOPs who have been granted a waiver from licensing to modify an ambulance specifically to transport an EID patient and have specific plans, training and quality assurance processes in place to do so. Public Safety EMSOPs may be called upon as a backup if the waivered commercial services are not available. MDH will determine the destination hospital in these cases.
i) Communication
EMS clinicians transporting PUIs for designated EIDs MUST contact the receiving hospital via EMRC prior to beginning that transport and enter the hospital through the entrance designated by the receiving hospital. The term PUI must be used to ensure the hospital understands and is prepared to receive the patient. Obtaining medical direction from the closest Frontline and Assessment Hospitals is always an option to determine the appropriate destination.

j) Refusal of transport
If a PUI for a designated EID refuses care or transport, the EMS clinician should remove him/herself from the immediate presence of the patient and contact the local health department through their dispatch center or locally defined procedures and provide as much of the following information about the patient that is available.
(1) Full name
(2) Age
(3) Gender
(4) Home address
(5) Contact phone numbers
(6) Current location
(7) Recent travel history
(8) Signs and symptoms being displayed
(9) Recent contact history with Ebola patients

The EMS clinician should expect to be involved in a discussion of the situation with health department and law enforcement officials, and if a quarantine/isolation order is issued, should be prepared to assist law enforcement in carrying out that order.

k) Treat the patient according to the signs and symptoms presented and according to the MIEMSS guidance for the specific EID. Limit invasive procedures and any that increase risk of distributing fluids or secretions to those absolutely necessary to maintain life and provide the patient with a reasonable level of comfort.

l) Pediatric patients under the age of 15 discovered at the home or in a non–health care environment should be transported to a Treatment Hospital that is also a pediatric trauma center if transport times are not longer than 45 minutes greater than transport to the nearest Frontline Hospital ED. If transport times are longer than 45 minutes greater than transport to the nearest Frontline Hospital ED, the patient should be taken to an Assessment Hospital (if within 45 minute transport time) or the closest Frontline Hospital.
F. AMIODARONE MAINTENANCE INFUSION FOR INTERFACILITY TRANSPORT

a) INDICATIONS

During interfacility transports, a CRT or paramedic may monitor a patient on a continuous IV amiodarone infusion provided that:

(1) Amiodarone maintenance infusion must have been started by the hospital staff prior to the interfacility transfer. An IV amiodarone maintenance infusion may NOT be started by the prehospital clinician in the prehospital setting.

b) CONTRAINDICATIONS

(1) Patients who have not yet reached their 18th birthday.

c) PROCEDURE

(1) Follow the appropriate ALS Algorithm and maintain the infusion as directed by the sending physician.

(2) The sending physician must document the infusion to be administered on the patient’s transport record or transport note, including the concentration of the medication and the infusion rate.

(3) The infusion must be maintained on an infusion pump designed for transport, and the clinician must be trained in the appropriate use of that specific make and model infusion pump. The ambulance must have an inverter to power the pump while in the vehicle.

(4) The total volume of amiodarone infused must be recorded on the patient care report.

(5) The patient must be on a cardiac monitor and vital signs should be documented on the patient care report at least every 15 minutes.

(6) When in doubt, contact the sending physician for medical direction.
G. LIDOCAINE INFUSION FOR INTERFACILITY TRANSPORT

a) INDICATIONS

During interfacility transports, a CRT-(I) or paramedic may monitor a patient on a continuous IV lidocaine infusion provided that:

(1) The lidocaine infusion must have been started by the hospital staff prior to an interfacility transfer. IV lidocaine infusions may NOT be started by the prehospital clinician in the prehospital setting.

b) CONTRAINDICATIONS

Patients who are clinically unstable, including but not limited to, unstable vital signs and blood pressure, current arrhythmia, and active chest pain

c) PROCEDURE

(1) Follow the appropriate ALS algorithm and maintain the infusion as directed by the sending physician.

(2) The sending physician must document the infusion to be administered on the patient’s transport record or transport note, including the concentration of the medication and the infusion rate.

(3) The infusion must be maintained on an infusion pump designed for transport, and the clinician must be trained in the appropriate use of that specific make and model infusion pump. The ambulance must have an inverter to power the pump while in the vehicle.

(4) The total volume of lidocaine infused must be recorded on the patient care report.

(5) The patient must be on a cardiac monitor and vital signs should be documented on the patient care report at least every 15 minutes.

(6) When in doubt, contact the sending physician for medical direction.
H. MORPHINE SULFATE INFUSION FOR INTERFACILITY TRANSPORT

a) INDICATIONS (NEW ‘20)

A CRT or a paramedic may monitor a patient on a continuous morphine sulfate infusion as long as the infusion was started by hospital staff prior to interfacility transfer (it may NOT be initiated by EMS).

b) CONTRAINDICATIONS

Patients who are clinically unstable, including but not limited to, unstable vital signs and blood pressure (exception: patients being transported for hospice care)

c) PROCEDURE

(1) Maintain the infusion as directed by the sending physician.
(2) The sending physician must document the infusion to be administered on the patient’s transport record or transport note, including the infusion rate.
(3) The infusion must be maintained on an infusion pump designed for transport, and the clinician must be trained in the appropriate use of that specific make and model infusion pump. The ambulance must have an inverter to power the pump while in the vehicle.
(4) The total volume of morphine infused must be recorded on the patient care report.
(5) The patient must be on a cardiac monitor and vital signs should be documented on the patient care report at least every 15 minutes.
(6) When in doubt, contact the sending physician for medical direction.
I. PROTON PUMP INHIBITOR FOR INTERFACILITY TRANSPORT (NEW ’20)

a) INDICATIONS

A CRT or a paramedic may monitor a patient on a PPI infusion as long as the infusion was started by hospital staff prior to interfacility transfer (it may NOT be initiated by EMS).

b) CONTRAINDICATIONS

(1) Patients who have unstable vital signs or are being transferred to an intensive care environment
(2) Patients with allergic reaction to infusing agent
(3) Patients who have not yet reached their 18th birthday

c) PROCEDURE

(1) Follow the appropriate ALS algorithm and maintain the infusion as directed by the sending physician/practitioner.
(2) The paramedic will review the sending physician’s order and will review the specific PPI agent to ensure appropriate administration, indications, and absence of contraindications.
(3) The PPI infusion must be maintained on an infusion pump designed for transport, and the clinician must be trained in the appropriate use of that specific make and model infusion pump. The ambulance must be equipped to power the pump while the pump is in the vehicle.
(4) The administration of the PPI infusion will be recorded on the patient care report to include the agent’s name, dose, rate, and volume infused during transport.
(5) When in doubt, contact the sending physician/practitioner for medical direction.
J. VASCULAR DOPPLER DEVICE

1. PURPOSE
When pulses are difficult to detect, or when a blood pressure cannot be measured using a stethoscope, a vascular Doppler device can be utilized.

2. INDICATION
Inability to palpate a pulse.

3. CONTRAINDICATIONS
Patients who have not yet reached their 18th birthday.

4. POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
None

5. PRECAUTIONS
When utilizing a Doppler device, avoid applying to much pressure with the device over the artery, as this may obliterate the pulse you are attempting to detect.

6. PROCEDURE
a) Identify the appropriate artery (e.g., carotid, brachial, radial, femoral, dorsalis pedis).
b) A large dollop of gel is applied to the site and to the device.
c) The device is held gently over the artery (too much pressure may obliterate the pulse), and the volume adjusted to hear the pulsation.
d) If the pulse is located, the area should be wiped clean, and the exact site should be marked with a pen or marker.
e) If blood pressure is being taken, the clinician finds the pulse and listens as the cuff is inflated. When the pulse sound disappears, you have identified the systolic pressure.
f) If no pulse is found, then sliding the device around the appropriate area or changing the angle of the device slightly may identify the location of the pulse. Be careful not to apply to much pressure on the skin.

7. TRAINING AND DOCUMENTATION
a) Clinicians must complete practical training.
b) Description of technique
c) Demonstration of device (features, operation, troubleshooting)
d) Documentation requirements (eMEDS®)
e) Scenario
K. PREHOSPITAL ULTRASOUND

1. **PURPOSE**
 a) Many high-impact, high-mechanism trauma patients do not exhibit signs and/or symptoms of internal bleeding in the first hour of the event. Utilizing prehospital ultrasound technology allows an additional non-invasive exam to increase survival and decrease morbidity and mortality from internal hemorrhage. A FAST exam will be completed in the following order with at least a six-second recording of each exam. In addition, patients who have the possibility of abdominal aortic aneurysm can benefit from the prehospital ultrasound exam. Finally, anytime the Termination of Resuscitation Protocol is being utilized and prehospital ultrasound is available, it gives an additional non-invasive exam to confirm and record clinician’s suspicion of the absence of cardiac activity.
 b) For patients presenting with torso or abdominal pain or who present with high-impact, high-mechanism trauma, a prehospital FAST exam will be performed.
 (1) Morison’s perihepatic view
 (2) Pelvic view
 (3) Perisplenic view
 (4) Cardiac view
 c) For patients who have a high clinical suspicion for abdominal aortic aneurysm, an abdominal ultrasound will be completed.
 d) Before termination of resuscitation, a cardiac ultrasound will be completed.

2. **INDICATIONS**
 a) When a patient presents with either obvious or possible high-impact, high-mechanism torso or abdominal trauma
 b) To confirm the presence or absence of wall motion in the cardiac arrest patient
 c) When a patient exhibits severe abdominal pain with radiation to the back, flank, and/or groin area.

3. **CONTRAINDICATIONS**
 a) Patients who have not reached their 15th birthday

4. **PROCEDURE**
 a) Initiate General Patient Care.
 b) Initiate appropriate trauma and or medical emergency protocol including all BLS/ALS interventions.
 c) The trained clinician will complete the appropriate prehospital ultrasound exam recording for at least six seconds.

ALERT: AT NO TIME SHOULD A PREHOSPITAL FAST EXAM DELAY PATIENT TRANSPORT.
d) Exam will be interpreted and relayed to the consulting hospital. In some cases, for example trauma patients for whom time and distance play a significant factor (category Charlie and Delta), the consulting physician may change the hospital destination based on the results of the prehospital ultrasound exam.

e) Continue patient care as appropriate for either medical and or traumatic emergency.

f) Assure exam is transmitted to the receiving facility through closed, secure network with patient care report.
L. STABILIZATION CENTER (NEW ’20)

1. Inclusion Criteria
 Patients eligible for entry into the Stabilization Center must be without an acute medical or traumatic complaint. If the patient is not requesting evaluation for an emergency medical condition and substance use is suspected, including suspected opioid patients who have improved with naloxone, patient must consent to be evaluated and transported to the Stabilization Center. Then the EMS clinician must complete the Stabilization Inclusion Checklist.

2. Treatment
 Initiate patient screening. All answers must be "YES" for the referral protocol to continue. For any "NO" answers, consultation with an adult Base Station is required.

<table>
<thead>
<tr>
<th>Patient without acute medical or traumatic complaint</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient is age 18 or older</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Patient is willing and able to cooperate with examination</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Systolic BP greater than 80 mmHg and less than 220 mmHg</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Diastolic BP greater than 50 mmHg and less than 120 mmHg</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Pulse less than 120</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Pulse greater than 50</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Respiratory rate less than 22</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Respiratory rate greater than 10</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Blood glucose less than 300 mg/dl</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Blood glucose greater than 70 mg/dl</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Pulse oximetry greater than 92% and no supplemental oxygen required</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Patient accepts transport to Stabilization Center</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>NO evidence of significant head or truncal trauma</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>NO evidence of new head trauma (ecchymoses, hematomas)</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>NO evidence of uncontrolled bleeding</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Patient can walk with no more than minimal assistance</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>No assistive devices (cane, walker permitted)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No assistance/stabilization of more than one limb required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Medical consultation is required for any “NO” response.
4. If all answers are “YES” or medical consultation approves if a “NO” occurs, the patient shall be transported to the Stabilization Center.
M. ALTERNATIVE DESTINATION PROGRAM (NEW ’20)

- Low Acuity / Priority 3 Patient
- Patient is 18 years of age or older
- Able to Communicate with EMS
- Understands Consent Form/Process
- Agrees to be transported to AD

Vital Signs Acceptable?

- Yes
- No

High Risk Conditions Absent?

- Yes
- No

Physical Exam without Time Dependent Needs

- Yes
- No

Obtain Consent from Patient

Contact & Obtain Acceptance of Patient from AD

Transport to AD

ACCEPTABLE VITAL SIGNS
- Respiration: 10-20
- Pulse: 50-120
- Pulse Ox: >92%
- Temperature: 96-102°F
- Blood Glucose: 70-300

ACCEPTABLE BLOOD PRESSURES:
- Urgent Care/PCP: Systolic 100-160 & Diastolic 60-100
- Stabilization/Crisis Center: Systolic 80-220 & Diastolic 50-120

High Risk Conditions
- Abdominal Pain, Unexplained
- Altered Mental Status
- Back Pain, Unexplained
- Chest Pain
- Dyspnea/Shortness of Breath
- Focal Neurological Deficits (Acute)
- Seizures
- Sepsis, Suspected
- Syncope
- Requires more than minimal assistance to walk
- Unable to Cooperate with History and Exam

Physical Exam/Time Dependent Needs
- Airway
- Breathing
- Circulation (Including to Extremity)
- Disability (Deficit) or Deformity
- Severe Tenderness with Palpation/Exam
- Significant Head or Truncal Trauma
- Uncontrolled Bleeding
- Require ALS Monitoring or Interventions
- Concern for Potential Deterioration in Condition

IF ANY HIGH RISK CONDITIONS OR PHYSICAL EXAM/TIME DEPENDENT NEEDS, EMS SHALL TRANSPORT TO CLOSEST APPROPRIATE ED/FEMF

IF PATIENT IS EXCLUDED BASED ON VITALS ALONE, TRANSPORT TO CLOSEST APPROPRIATE ED/FEMF UNLESS MEDICAL DIRECTION FROM APPROVED BASE STATION AUTHORIZES TRANSPORT TO ALT DESTINATION

Rev. 06/10/2019 – Approved EMS Board 06/11/2019
Examples of Low Acuity Chief Complaints

- Allergy or hay fever
- Back pain, mild; able to walk without assistance
- Contusions or abrasions, minor
- Cough, mild; without hemoptysis or respiratory impairment
- Non-traumatic dental problems
- Diarrhea, without dizziness or other signs of dehydration
- Dizziness, chronic (recurrent or known history)
- Dysuria, mild; female
- Ear pain
- Ingrown toenails
- Itching without systemic rash
- Eye irritation without signs of active infection, minor
- Fracture, distal extremity (forearm, lower leg), isolated injury, not open, With neuro/vascular intact
- Headache, minor without neurological impairment
- Injury follow-up (minor injury, treated previously)
- Joint pain
- Mouth blisters
- Muscle aches
- Nausea, vomiting
- Neck pain (no history of acute trauma)
- Nosebleed (resolved)
- Painless urethral discharge
- Physical exam requests (except patients with diabetes, CHF, kidney failure, cancer)
- Plantar warts
- Rectal pain/itching, minor
- Sexual disease exposure
- Simple localized rash
- Sinusitis, chronic
- Skin infection or sores, minor
- Sore throat without stridor
- Sunburn (localized without blisters)
- Vaginal discharge
- Vaginal bleeding (Hx non-pregnant, not postpartum, and requires less than one pad in 5 hours)
- Upper respiratory infection
- Work release or disability
- Wound checks
1. PURPOSE
The objective of this pilot program is to assess the impact, accuracy and safety of providing low-acuity patients, identified as Alpha patients by IAED criteria (Basic Life Support), with immediate on-scene care by a two-person team composed of a BCFD Minor Definitive Care Now (MDCN) paramedic clinician, and one of the following Advanced Level Clinicians (ALP): a UMMC Nurse Practitioner (NP), a Maryland-licensed physician affiliated with UMMC with board certification in emergency medicine (“Physician”), or UMMC Physician Assistant (PA). This will be referred to as the MDCN Team.

2. INDICATIONS
a) Low-acuity patients, identified by the IAED™ MPDS® protocol as an ‘Alpha determinant code Basic Life Support,’ who meet additional criteria outlined in the MDCN protocol below; AND
b) Patients with an incident address that falls within the geographic boundaries of the UMMC, Midtown Campus or Grace Medical Center catchment areas; AND
c) Patients who consent to participate in the MDCN Pilot Program.

3. CONTRAINDICATIONS
a) Patients who decline enrollment in MDCN Pilot Program;
b) Patients who are deemed clinically inappropriate for on-scene treatment by the MDCN Team following assessment;
c) Individuals who refuse participation by revoking written consent, verbal refusal of care at time of visit;
d) Patients who possess a language or communication barrier that inhibits the MDCN Team’s ability to appropriately address the patient’s needs at the scene;
e) Patients who are not able to or lack the capacity to understand the informed consent process; and
f) Patients who have not yet reached their 18th birthday.

4. GENERAL PROCEDURES
a) When a 9-1-1 call response for EMS service is dispatched, the MDCN Team will respond to the scene concurrently with the typical BCFD EMS response unit to Alpha-level calls within the UMMC, Midtown Campus and Grace Medical Center patient catchment areas.
b) If a patient refuses EMS care and transport, a patient refusal form and eMEDS® should be completed per The Maryland Medical Protocols for Emergency Medical Services while on scene.
c) If the patient is determined to be a low-acuity candidate for MDCN program (as defined in Section VI below), the BCFD EMS response personnel will offer the patient the option to be seen by the MDCN Team.
d) The MDCN Team will request patient consent (see MDCN Consent Form) to provide minor definitive treatment on scene.
e) Once consent is provided, patient information, including information collected by the EMS response personnel can be shared with the ALP.

f) The EMS response personnel will return to service. If the MDCN Team determines that the patient needs to be transported and the patient decides they want to be transported, or if for any reason, the patient decides they want to be transported, the MDCN Paramedic will radio PSAP for an EMS transport unit. After requesting the unit, the BCFD MDCN Paramedic will perform any advanced life support skills, as defined by the MIEMSS Protocols for EMS Clinicians, to provide all necessary care within their scope of practice, until additional EMS clinicians arrive on scene and assume patient care and transport to the closest appropriate hospital. Any care rendered under the MIEMSS Protocols will be documented in eMEDS.

g) The MDCN Team performs any additional assessment and if indicated, the ALP will render treatment (see 12. Formulary, below). The MDCN Paramedic may assist with patient assessment (e.g., vital signs, pulse oximetry), the ALP will provide treatment associated with the MDCN Pilot Program.

h) The ALP may also offer to assist patients with setting up clinic appointments. The Operations Center, located at UMMC, may call and connect patients to appropriate care, either inside or outside of the University of Maryland Medical System (UMMS), depending on need, preference, and insurance status of the patient.

i) The MDCN Team documents the patient care encounter in the UMMC electronic health record system (“Epic”). If at any time during the encounter the patient refuses further assessment or treatment, the refusal must be documented in Epic.

j) The UMMC ALP and BCFD MDCN Paramedic clinicians will be restricted to their respective scopes of practice set by the Maryland Board of Nursing, Maryland Board of Physicians and MIEMSS.

5. ADVANCED LEVEL PRACTITIONER PROCEDURES

a) This protocol may only be used by the Advanced Level Practitioner (ALP).

b) MDCN Paramedics will follow The Maryland Medical Protocols for Emergency Medical Services.

c) Under the MDCN Pilot Program, all eligible patients will be offered the choice to “opt in” to receive on-scene definitive care. Participation in this pilot program is voluntary and will require patients to provide signed, informed consent. The on-scene treatment provided by the ALP will be in accordance with the medication and procedure list detailed in 11. Formulary and 12. Supply List (366-17).

d) Inclusion Criteria: the patient must provide consent and must not have any of the following exclusion criteria:
(1) A chief complaint consistent with evaluation that would indicate a need for the capabilities of a full service ED
 (a) High risk chief complaints are currently defined as dyspnea, altered mental status, syncope, chest pain, focal neurological deficits, unexplained back or abdominal pain, seizures, and sepsis (see vital sign criteria listed in 8. Medical Consultation (366-14).

(2) Physical findings consistent with time-dependent needs for emergent assessment or stabilization
 (a) Signs on exams that indicate a threat to airway, breathing, circulation, circulation to an extremity, disability (deficit) or deformity, as well as severe tenderness (as indicated by an assessment of airway, breathing, circulation, disability, exposure (ABCDE), etc.).

(3) Reasonably foreseeable signs or suspicion of any deterioration of condition (e.g., airway, breathing, hemodynamic, or neurologic compromise)

(4) Any requirement for any advance life support (ALS) monitoring or ALS interventions

 e) In order to include the patient in the MDCN Pilot Program, the MDCN Team will obtain a complete set of vital signs, medical history, and the ALP will obtain a signed MDCN Pilot Program Consent Form.

 f) If the patient is stable and deemed by the ALP to meet the criteria of the MDCN protocol, and has an injury or disease process, which can be safely treated on-scene:
 (1) The consenting patient will receive definitive on-scene care by the ALP member of the MDCN Team.
 (2) If the patient refuses to participate in the MDCN Pilot Program, the patient’s condition deteriorates, or while on scene the patient changes their mind and declines to participate, the patient will be taken to the closest appropriate ED via ambulance. See 4. General Procedures above for response steps.

 g) The MDCN Team will provide discharge instructions for each patient who participates in the MDCN Pilot Program.

 h) In the event that the MDCN Team evaluates the consented patient and recommends ED transfer but the patient refuses, see 4. General Procedures (366-11) for appropriate actions.

6. MEDICATION MANAGEMENT

The ALP is authorized to manage drugs and devices under the following protocols:
 a) The management of drugs or devices includes evaluating, initiating, altering, discontinuing, furnishing and ordering of prescriptive and over-the-counter medications.

 b) Medication evaluation includes assessment of:
 (1) Other medications being taken
 (2) Prior medications used for current condition
 (3) Medication allergies and contraindications, including appropriate labs and exams
c) The drug or device is appropriate to the condition being treated, and:
 (1) Accepted dosages per references.
 (2) Generic medications are ordered if appropriate.

d) A plan for follow-up is written in the patient’s chart and provided to the patient.
e) The prescription must be written in patient’s Epic chart, including name of drug, strength, instructions and quantity, and signature of the ALP.

7. DISPENSING MEDICATIONS
The ALP may dispense prescription drugs and devices, under the following protocols:
 a) They have current prescriptive authority, including Maryland CDS registrations.
 b) All drugs and devices ordered are limited to the Formulary OR are per the recommendations in the Resources listed in this document.
 c) The drugs and devices ordered are consistent with the ALP’s educational preparation or for which clinical competency has been established and maintained.
 d) The drug or device ordered is appropriate to the condition being treated.
 e) Patient education is given regarding the drug or device.
 f) The name, title, and licensing number of the ALP is written on the transmittal order.
 g) A physician affiliated with the MDCN Pilot Program is available during hours of operation for in person or telephone medical consultation.
 h) The drug or device utilizes required pharmacy containers and labeling.
 i) All appropriate record keeping practices of the dispensary are performed.
 j) All other applicable Standardized Procedures in this document are followed during health care management.
 k) All General Policies regarding Review, Approval, Setting, Education, Evaluation, Patient Records, Supervision and Consultation in these Standardized Procedures are in force.

8. MEDICAL CONSULTATION
While it is the intent of MDCN Pilot Program to respond to low-acuity calls, if immediate patient deterioration should occur, EMS transport resources shall be utilized.

MDCN Medical Director notification and/or emergent ALS transport to the closest appropriate ED with the following being examples of patients and scenarios that shall generate ALS transport:
 a) Acute myocardial infarction (AMI) or symptoms consistent with AMI
 b) Acute central nervous system or focal neurologic deficits
 c) Severe CHF
 d) Severe respiratory distress
 e) O₂ Saturation < 90% on room air, if acute
 f) Hypotension
 g) Acute altered mental status, unless intoxicated
 h) Adult heart rate ≥ 140
 i) Emergency hypotension
 j) Moderate to severe CHF
k) SBP > = 240 or DBP > = 140 at presentation (asymptomatic) with preexisting hypertension history
l) Adult heart rate > = 110 at time of disposition
m) The MDCN Team responds in < 14 days for same acute complaint *Does not apply to chronic recurrent complaints unless there is a change in the complaint*

n) Elevated BP or heart rate in pregnancy or < = 6 weeks post-partum
o) Pregnancy complications
p) Chest pain (potentially consistent with angina or angina equivalent symptoms)
 (1) Nonspecific chest pain age > = 30 with history of:
 • Hypertension
 • Diabetes
 • Smoking
 • Coronary artery disease
 • Hyperlipidemia
 • Family history of coronary artery disease by age of 60; OR
 Nonspecific chest pain age > = 50 without risk factors
 • Abdominal pain
 • Requiring analgesic
 Nonspecific chest pain age > = 70
 • Diabetic
 • Uncertain diagnosis

(2) Lab Criteria:
 • D-Stick –low less than 70 or greater than 300
 • O2 Sat 2% less than chronic levels

(3) Vital sign and age consult criteria
 • Heart rate/minute
 ° Adult heart rate > = 110
 • Hypertension
 ° Adult asymptomatic hypertension of SBP > 220 or DBP > 120 at time of disposition with history of hypertension
 ° Adult asymptomatic SBP > 195 or DBP > 115 at disposition without history of hypertension
OPTIONAL SUPPLEMENTAL PROTOCOL
BI-LEVEL POSITIVE AIRWAY PRESSURE (BiPAP)

V. JURISDICTIONAL OPTIONAL PROTOCOLS SUPPLEMENTAL PROGRAMS/PROTOCOLS

A. AIRWAY MANAGEMENT: BI-LEVEL POSITIVE AIRWAY PRESSURE (BiPAP) – CHRONIC (NEW ’20)

1. PURPOSE
To define the indications for the use of BiPAP by a paramedic for the continuation of BiPAP airway management which has been initiated prior to EMS arrival.

a) The level of care required for the interfacility transport of a "Chronic BiPAP Patient" is within the scope of a practice of a paramedic who has been credentialed, is competent, and received adequate training specific to the patient’s condition and equipment necessary to provide care.

b) Exception: A CRT-I or EMT may transport a chronically ventilated patient who is going for routine medical care and has in attendance a patient provided attendant who can manage the patient's specific BiPAP equipment.

2. INDICATIONS (NEW ’20)

a) Patient has established BiPAP settings that have no changes within 6 hours or changes reflecting improvement in the patient’s condition.

b) Patients who are 13 years of age or older. If less than 13 years of age, patients shall be screened by SCT service (medical director or nurse) to determine the crew composition.

c) Exception: A CRT-I or EMT may transport patients of any age who are chronically on BiPAP if they are being transported for routine appointments, which are not related to a respiratory complaint. A patient-provided attendant who can manage the patient’s specific BiPAP equipment must be present during the transport.

3. CONTRAINDICATIONS

a) Circumstances in which endotracheal intubation or a surgical airway is indicated.

4. PROCEDURE

a) Assure patent airway.

b) Perform appropriate patient assessment, including obtaining vital signs, pulse oximeter (SpO2) reading, and cardiac rhythm.

c) Apply BiPAP device per manufacturer’s instructions.

d) Program the device to match the settings of the BiPAP machine that the patient is currently using.

e) Assess the patient after placing the BiPAP device selected for transfer. If respiratory distress occurs, support the patient with a BVM and supplemental oxygen until facility personnel reestablish therapy with original BiPAP device.

f) Continuously reassess the patient.

g) Monitor continuous pulse oximetry.
OPTIONAL SUPPLEMENTAL PROTOCOL
BI-LEVEL POSITIVE AIRWAY PRESSURE (BiPAP)

h) Monitor continuous ETCO₂ with nasal prongs, if available. (Adults only)

i) Follow the appropriate set of standing orders for continued transport.

j) Confirm the availability of a BiPAP device at the destination facility.

FOR CIRCUMSTANCES IN WHICH THE PATIENT DOES NOT IMPROVE OR CONTINUES TO DETERIORATE DESPITE BIPAP AND/OR MEDICAL THERAPY, TERMINATE BIPAP ADMINISTRATION AND PERFORM BVM VENTILATION AND ENDOTRACHEAL INTUBATION IF NECESSARY.
A2. AIRWAY MANAGEMENT: BI-LEVEL POSITIVE AIRWAY PRESSURE (BiPAP) – ACUTE (NEW ’20)

1. PURPOSE
 To define the indications for the initiation of BiPAP by a paramedic.

2. INDICATIONS (NEW ’20)
 a) Patients who are 13 years of age or older, presenting with respiratory distress or failure, due to respiratory infection, pulmonary edema, COPD or asthma. The patient must have a patent, self-maintained airway and spontaneous respirations.

3. CONTRAINDICATIONS
 a) Circumstances in which endotracheal intubation or a surgical airway is indicated.
 b) Patients under 13 years of age.

4. PROCEDURE
 a) Ensure emergency equipment is immediately available and an alternate airway management plan has been established.
 b) Assure patient airway.
 c) Perform appropriate patient assessment, including obtaining vital signs, pulse oximeter (SpO₂) reading and cardiac rhythm.
 d) Apply BiPAP device per manufacturer’s instructions.
 e) Set initial inspiratory positive airway pressure (IPAP) and expiratory positive airway pressure (EPAP) to decrease patient respiratory effort and adjust as needed
 (1) Start with EPAP at 5 cm of water (max 8 cm of water).
 (2) Start with IPAP at 10 cm of water (max 15 cm of water).
 f) Reassess the patient after placing the BiPAP device.
 g) Monitor continuous pulse oximetry.
 h) Monitor continuous ETCO₂ with nasal prongs, if available. (Adults only)
 i) Notify the receiving facility that the patient is on a BiPAP device.
 j) If the patient is located within a healthcare facility, observe the patient on BiPAP at the referring facility. If the patient is not tolerating BiPAP, consult with the sending or receiving physician prior to transport.

FOR CIRCUMSTANCES IN WHICH THE PATIENT DOES NOT IMPROVE OR CONTINUES TO DETERIORATE DESPITE BIPAP, TERMINATE BIPAP ADMINISTRATION AND PERFORM BVM VENTILATION AND ENDOTRACHEAL INTUBATION IF NECESSARY.
A3. AIRWAY MANAGEMENT: HEATED/HUMIDIFIED HIGH-FLOW NASAL CANNULA (HHFNC) (NEW ‘20)

1. PURPOSE
 To define the indications for the initiation of HHFNC by a Paramedic (for patients 13 years or older) or SCT Paramedic (for patients less than 13 years old).

2. INDICATIONS
 a) Patients with hypoxic respiratory failure, which may be due to the following causes: pulmonary edema, pneumonia, pulmonary embolism, pulmonary hypertension, or interstitial lung disease.

3. CONTRAINDICATIONS
 a) Inability to provide continuous, heated humidification using an approved delivery device.
 b) Inability to provide therapy through an appropriate sized nasal prongs.
 c) Insufficient supply of oxygen to complete the transport.
 d) Basilar skull fracture or severe facial trauma.
 e) Circumstances in which endotracheal intubation or a surgical airway is indicated.
 f) Circumstances in which the patient does not improve or continues to deteriorate despite CPAP administration.

4. PROCEDURE
 a) Ensure that an adequate supply of oxygen is available for the transport.
 (1) Calculate the amount of oxygen needed prior to departure.
 (2) Ensure that you have at least two times the amount of oxygen anticipated.
 b) Perform appropriate patient assessment, including obtaining vital signs, pulse oximeter (SpO₂) reading, and cardiac rhythm.
 c) Set FiO₂ to maintain SpO₂ at or above 94% (or to patient’s baseline oxygen saturation, if known).
 d) Set flow rate in liters per minute (L/min) to decrease work of breathing.
 (1) Flow calculation: 2 L/kg/min up to the first 12 kg, plus 0.5 L/kg/min for each kg thereafter, up to a maximum flow rate of 60 L/min.
 e) Reassess vitals, work of breathing, mental status and breath sounds.
 f) Consider the need for escalation of respiratory support if patient remains in respiratory failure on more than 2 L/kg/min of flow or maximum settings for the delivery device.

FOR CIRCUMSTANCES IN WHICH THE PATIENT DOES NOT IMPROVE OR CONTINUES TO DETERIORATE ON HHFNC, TERMINATE HHFNC ADMINISTRATION AND ESCALATE RESPIRATORY SUPPORT TO PROVIDE POSITIVE PRESSURE VENTILATION VIA CPAP, BIPAP, BVM OR ENDOTRACHEAL INTUBATION, IF NECESSARY.
Pediatric Section

g) Pediatric patients (under 13 years of age) who require HHFNC must be transported by a nurse, nurse practitioner, respiratory therapist or physician, who is credentialed, educated, and competent in dealing with the ventilator and the ventilated patient.

h) Exception: If a critical interfacility transfer is needed and a credentialed, educated, and a competent healthcare clinician (as listed in "a" above) is genuinely unavailable, then a credentialed, educated and competent SCT paramedic may attend the patient with the addition of a second ALS provider.

(1) SCT service (medical director or nurse) will screen the call prior to transport.

(2) Both the sending and receiving physicians must be in agreement with the team configuration prior to transport.
B. AIRWAY MANAGEMENT: LARYNGEAL MASK AIRWAY WITH DESIGN TO FACILITATE HOSPITAL ENDOTRACHEAL INTUBATION

1. PURPOSE

To provide an alternative means of ventilating patients who cannot be intubated via direct laryngoscopy with a laryngeal mask airway device that also facilitates hospital placement of an endotracheal tube.

2. INDICATIONS

Inability to place an endotracheal tube in a patient who has no gag reflex (including patients who cannot be intubated following the administration of succinylcholine)

3. CONTRAINDICATIONS

a) Responsive patients with an intact gag reflex
b) Lack of an appropriately-sized device

4. POTENTIAL ADVERSE EFFECTS/COMPLICATIONS

a) The laryngeal mask airway provides limited protection against the effects of regurgitation and aspiration.
b) High airway pressures may divert gas to the atmosphere.

5. PROCEDURE

a) Inspect all components of the laryngeal mask airway for damage.
b) Select appropriately-sized laryngeal mask airway as per manufacturer specifications.
c) Lubricate with water soluble jelly.
d) Maintain cervical immobilization (if indicated) and lift tongue.
e) Insert laryngeal mask airway to indicated depth.
f) Inflate cuff as per manufacturer specifications.
g) Ventilate and evaluate lung ventilation (breath sounds, absence of gastric sounds, chest rise, ETCO₂, oxygen saturation).
h) Adjust cuff inflation and position as needed to obtain a seal of the airway.
i) Once effective ventilation is confirmed, continue to monitor oxygen saturation and ventilate to desired ETCO₂ level.
j) If unable to achieve adequate ventilation using the laryngeal mask airway, remove device, reinitiate BVM ventilation, and then attempt again. If unable to ventilate, consider obstructed airway maneuvers (if not yet performed) and refer to Cricothyroidotomy Protocol.
C. AIRWAY MANAGEMENT: VIDEO LARYNGOSCOPY FOR OROTRACHEAL INTUBATION

1. PURPOSE
 Endotracheal intubation using video laryngoscopy involves visualizing the glottic opening using specialized technology to view “around the corner” and pass the endotracheal tube, under optimal visualization, into the trachea. The purpose is to provide airway and ventilatory support for apnea, hypoxia, hypoventilatory respiratory failure, or respiratory insufficiency.
 The video laryngoscope device must have the following features:
 a) Color monitor
 b) Anti-fog mechanism
 c) Video recording device
 d) Appropriately-sized blade for the patient being intubated

2. INDICATION
 Video laryngoscopy and orotracheal intubation is indicated for patients who meet one or more of the following criteria and for whom appropriately-sized equipment is available:
 a) Apnea or agonal respirations
 b) Airway reflex compromised
 c) Ventilatory effort compromised
 d) Injury or illness involving the airway
 e) Potential for airway or ventilatory compromise

3. CONTRAINDICATIONS
 Lack of an appropriately-sized laryngoscope blade for the patient being intubated.

4. POTENTIAL ADVERSE EFFECTS/COMPLICATIONS
 a) Trauma to the mouth, pharynx, larynx, trachea, esophagus
 b) Right mainstem bronchus intubation
 c) Vomiting
 d) Secondary brain injury resulting from hypoxia and/or hypotension
 e) Displacement of a properly placed endotracheal tube
 f) Esophageal intubation

5. PRECAUTIONS
 a) Attempt visualization and endotracheal intubation up to two times. If additional attempts are indicated, consult medical direction and consider what changes would result in improved visualization and success at endotracheal placement of the ET tube.
 b) Confirm placement of the endotracheal tube in the trachea as described in AIRWAY MANAGEMENT: OROTRACHEAL INTUBATION.
6. PROCEDURE
 a) Insert the Video Laryngoscope Device midline into the pharynx.
 b) Advance the Video Laryngoscope Device midline to center the vocal cords on the video screen.
 c) Pass the endotracheal tube between the vocal cords, remove the stylet, and advance the tube to the desired depth.
 d) Secure the endotracheal tube and verify correct placement.
D. ANTIMICROBIAL INFUSION FOR INTERFACILITY TRANSPORT
(Paramedic Only)

1. PURPOSE
During interfacility transports, a paramedic may monitor a patient on a continuous IV antimicrobial medication infusion as long as the following criteria have been met.

2. INDICATIONS
The antibiotics infusion must have been started by the hospital staff prior to an interfacility transfer. IV antimicrobial infusions may NOT be initiated by the prehospital clinician.

3. CONTRAINDICATIONS
a) Patients who have unstable vital signs or are being transferred to an intensive care environment
b) Patients with allergic reaction to infusing antibiotic agent or class
c) Pediatric patients

4. PROCEDURE
a) Follow the appropriate ALS algorithm and maintain the infusion as directed by the sending physician/practitioner.
b) The paramedic will review the sending physician’s antibiotics order and will review the specific antibiotic agent to ensure appropriate administration, indications, and absence of contraindications.
c) Unless not indicated per the medication profile, the antimicrobial infusion must be maintained on an infusion pump designed for transport, and the clinician must be trained in the appropriate use of that specific infusion pump. The ambulance must have an inverter to power the pump while in the vehicle.
d) The administration of the antibiotics infusion will be recorded on the patient care report to include the antibiotic agent’s name, dose, rate, and volume infused during transport.
e) When in doubt, contact the sending physician/practitioner for medical direction.

5. SPECIAL CONSIDERATIONS
a) The ALS service or jurisdiction must provide and document training of the ALS clinicians on the operation of infusion pump(s) being used.
b) The ALS service or jurisdiction must provide and document training of the ALS clinicians on the general administration of antimicrobials. However, due to the vast array of antimicrobials, the paramedic must utilize a practice of evaluating each patient care situation with the use of current medication reference materials to ensure appropriate administration of the infusion.
c) The ALS service or jurisdiction must also have a quality improvement (QI) program monitoring the appropriateness and quality of care provided. The QI program should be directed or coordinated by, at minimum, an ALS clinician.
1. **Pharmacology**
 Antimicrobials are agents that kill microorganisms or suppress their multiplication or growth.

2. **Pharmacokinetics**
 Antimicrobial agents are classified functionally according to the manner in which they adversely affect a microorganism.

3. **Indications**
 Treatment of known or suspected infectious disease, or as prophylaxis for an infectious process

4. **Contraindications**
 a) Patients who have unstable vital signs or are being transferred to an intensive care environment
 b) Patients with allergic reaction to specific antibiotic agent or class
 c) Pediatric patients

5. **Adverse Effects and Precautions**
 Antimicrobials have various adverse effects depending on the specific agent’s mechanism of action. Current medication reference materials should be consulted for specific patient situation.

6. **Dosage**
 a) Adult: Administer per practitioner order.
 b) Pediatric: Not indicated.
E. BLS GLUCOMETER PROTOCOL
(EMT ONLY)

a) PURPOSE
The glucometer should be utilized by BLS clinicians to determine the blood glucose level in an attempt to determine the etiology of the patient’s condition and provide treatment tailored to the needs of the patient before ALS intervention can be made.

b) INDICATIONS
The glucometer should be utilized for any patient presenting with an altered mental status, seizure activity, unresponsiveness, stroke, combative, suspected cyanide poisoning, reported history of high or low blood sugar, and pediatric bradycardia or cardiac arrest.

c) TREATMENT
Utilize the glucometer to determine the patient’s blood glucose level. If the glucose level is less than 70 mg/dl:

(1) ADULT: Administer glucose paste (10–15 grams) between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.

(2) PEDIATRIC: Administer glucose paste (10–15 grams) between the gum and cheek; this may be accomplished through several small administrations. Consider single additional dose of glucose paste if not improved after 10 minutes.

IF THE GLUCOSE LEVEL IS GREATER THAN 100 MG/DL, DO NOT ADMINISTER GLUCOSE PASTE.
F. OVERDOSE/POISONING: CYANIDE POISONING

1. Inclusion Criteria
 Depending on its form, cyanide can enter the body through inhalation, ingestion, or absorption through the skin. Cyanide should be suspected in occupational or smoke exposures (e.g., firefighting), industrial accidents, natural catastrophes, suicide and murder attempts, chemical warfare, and terrorism (whenever there are multiple casualties of an unclear etiology).

 Non-specific and early signs of cyanide exposure (inhalation, ingestion, or absorption) include the following signs and symptoms: anxiety, vertigo, weakness, headache, tachypnea, nausea, dyspnea, vomiting, and tachycardia.

 "High concentrations of cyanide" will produce:
 • Markedly altered level of consciousness
 • Seizure
 • Respiratory depression or respiratory arrest or
 • Cardiac dysrhythmia (other than sinus tachycardia)

 The rapidity of onset is related to the severity of exposure (inhalation or ingestion) and may have dramatic, immediate effects causing early hypertension with subsequent hypotension, sudden cardiovascular collapse, or seizure/coma.

2. Treatment:
 a) Remove the patient from the source of exposure. (In the smoke inhalation victim, maintain appropriate clinician respiratory protection, SCBA.)
 b) Restore or maintain airway patency.
 c) Administer 100% oxygen via non-rebreather mask or bag-valve-mask.
 d) Provide aggressive advanced airway management.
e) Establish IV access with LR.
f) Use glucometer and treat patient accordingly.
g) There is no widely available, rapid, confirmatory cyanide blood test. Treatment decisions must be made on the basis of clinical history and signs and symptoms of cyanide intoxication. For the patient with an appropriate history and manifesting one or more of “high concentrations of cyanide” signs or symptoms:

(1) Collect a pre-treatment blood sample in the appropriate tube for lactate and cyanide levels.

(2) If patient history is suggestive of CO inhalation, follow Overdose/Poisoning: Carbon Monoxide/Smoke Inhalation Protocol

(3) If patient (adult or pediatric) has a reported oral cyanide ingestion and does not manifest signs and symptoms meeting administration criteria, medical consultation is required for administration of hydroxocobalamin (consider simultaneous consultation with poison control and medical consultation).

(4) ADULT: Administer hydroxocobalamin. Initial dose is 5 grams administered over 15 minutes SLOW IV. Each 2.5 gram vial of hydroxocobalamin for injection is to be reconstituted with 100 mL of LR and administered at 10–15 mL/minute.

An additional 5 gram dose may be administered with medical consultation.

(5) PEDIATRIC: Administer hydroxocobalamin 70 mg/kg (reconstitute concentration is 25 mg/mL). Each 2.5 gram vial of hydroxocobalamin for injection is to be reconstituted with 100 mL of LR and administered at 10–15 mL/minute. Maximum single dose is 5 grams.

HYDROXOCOBALAMIN MAY CAUSE TEMPORARY RED DISCOLORATION OF THE SKIN, URINE, AND MUCOUS MEMBRANES (WHICH IS NOT TO BE CONFUSED WITH THE RARE SIGN OF CARBON MONOXIDE POISONING). THE DEVICES THAT RELY ON COLORIMETRY (E.G., PULSE OXIMETER AND CO LEVEL) WILL BE INTERFERED WITH BY THE COLOR CHANGE AND ARE NOT RELIABLE FOR PATIENT ASSESSMENT.

NOTIFY HOSPITAL OF ADMINISTRATION OF HYDROXOCOBALAMIN AND DO NOT ADMINISTER SODIUM THIOSULFATE THROUGH THE SAME IV, AS THIS MAY CAUSE CRYSTALLINE PRECIPITATION.
HYDROXOCOBALMIN

1. Pharmacology
 Hydroxocobalamin is a form of Vitamin B-12.

2. Pharmacokinetics
 Hydroxocobalamin binds to the cyanide ion, forming cyanocobalamin, which is excreted in the urine.

3. Indication
 Signs and symptoms of high concentrations of cyanide exposure with an appropriate clinical history are indications for treatment as there is no widely available, rapid, confirmatory cyanide blood test.

 “**High concentrations of cyanide**” will produce:
 - Markedly altered level of consciousness
 - Seizure
 - Respiratory depression or respiratory arrest or
 - Cardiac dysrhythmia (other than sinus tachycardia)

 Mechanism of action of cyanide in the body
 Cyanide inhibits mitochondrial cytochrome oxidase and hence blocks electron transport, resulting in decreased oxidative metabolism and oxygen utilization. Lactic acidosis occurs as a consequence of anaerobic metabolism. The oxygen metabolism at the cell level is grossly hampered.

 Cyanide is rapidly absorbed from the stomach, lungs, mucosal surfaces, and unbroken skin.

 The lethal dose of potassium or sodium cyanide is 200 to 300 mg, and of hydrocyanic acid is 50 mg. Effects begin within seconds of inhalation and within 30 minutes of ingestion. The rapidity of onset is related to the severity of exposure (inhalation or ingestion) and may have dramatic, immediate effects causing sudden cardiovascular collapse or seizure/coma.

 Initial effects of poisoning include headache, faintness, vertigo, excitement, anxiety, a burning sensation in the mouth and throat, breathing difficulty, increased heart rate, and hypertension. Nausea, vomiting, and sweating are common.

 Smell of almonds is not a reliable sign and the clinician should not attempt to inhale local air nor patient breath to determine if the almond smell is present.
HYDROXOCOBALAMIN (CONTINUED)

4. Contraindications
 Patients with known anaphylactic reactions to hydroxocobalamin or cyanocobalamin

5. Adverse Effects
 a) Reddish discoloration of the skin and urine (which is not to be confused with the rare sign of carbon monoxide poisoning). The devices that rely on colorimetry (e.g., pulse oximeter and CO level) will be interfered with by the color change and are not reliable for patient assessment.
 b) Rash
 c) Increased blood pressure
 d) Nausea
 e) Headache
 f) Decreased white cell count
 g) Injection site reactions
 h) Allergic reactions have been observed.

6. Precautions
 a) Notify hospital of administration of hydroxocobalamin and do not administer sodium thiosulfate through the same IV, as this may cause crystalline precipitation.
 b) Administer slowly over 15 minutes.
 c) Watch for administration sight reactions.
 d) Monitor for hypertensive response to administration.

 BE SURE TO ASSESS FOR EVIDENCE OF TRAUMATIC OR MEDICAL CAUSES FOR PATIENT’S ALTERED MENTAL STATUS.

7. Dosage
 a) Collect a pre-treatment blood sample in the appropriate tube to assess cyanide level.
 b) ADULT: Administer hydroxocobalamin. Initial dose is 5 grams administered over 15 minutes SLOW IV. (Each 2.5 gram vial of hydroxocobalamin for injection is to be reconstituted with 100 mL of LR and administered at 10–15 mL/minute.).
 An additional 5 gram dose may be administered with medical consultation.
 c) PEDIATRIC: Administer hydroxocobalamin 70 mg/kg (reconstitute concentration is 25 mg/mL). Each 2.5 gram vial of hydroxocobalamin for injection is to be reconstituted with 100 mL of LR and administered at 10–15 mL/minute. Maximum single dose 5 grams.
 d) If patient (adult or pediatric) has a reported oral cyanide ingestion and does not manifest signs and symptoms meeting administration criteria, consider medical consultation for administration of hydroxocobalamin.
G. EMT ACQUISITION OF 12-LEAD ELECTROCARDIOGRAPHY

1. PURPOSE

Coronary heart disease is the single largest cause of death in U.S. men and women. Early identification and treatment of patients with acute myocardial infarction (AMI) has proven to reduce myocardial damage and decrease morbidity and mortality. The goal of this program is to allow an EMT to acquire and transmit a 12-lead (15-lead if trained to perform) electrocardiogram (EKG) to the receiving facility and possibly reduce the door to reperfusion time for the AMI patient.

2. PRESENTATION

Chest discomfort that may radiate to the arm, shoulders, jaw, or back. Generally described as a crushing pain or toothache. May be accompanied by shortness of breath, sweating, nausea, or vomiting.

OR

a) Chest discomfort. Some heart attacks involve discomfort in the center of the chest that lasts for more than a few minutes or that goes away and comes back. This discomfort can feel like uncomfortable pressure, squeezing, or fullness.

b) Discomfort in other areas of the upper body. Symptoms can include discomfort in one or both arms or in the back, neck, jaw, or stomach.

c) Shortness of breath. This symptom often accompanies chest discomfort. However, it can also occur prior to the chest discomfort.

d) Other signs. These may include breaking out in a cold sweat, nausea, light-headedness, or a sense of impending doom.

e) Post-cardiac arrest with ROSC.

f) Medical history and contributing factors.

(1) A previous heart attack or procedure to open up coronary arteries
(2) Family history of heart disease
(3) Diabetes mellitus
(4) High blood pressure
(5) High blood cholesterol
(6) Overweight
(7) Physical inactivity
(8) Cigarette smoking
3. INDICATIONS

Any patient complaining of chest discomfort or exhibiting signs, symptoms, or medical history as outlined in Section 2 (Presentation).

4. CONTRAINDICATIONS

Acquisition of a 12-lead EKG should not take precedence over required life-saving measures (e.g., CPR, assisting respirations, clearing or maintaining a patient’s airway, checking blood glucose, extrication, or removing a patient from a dangerous scene).

5. PROCEDURE

a) Initiate General Patient Care.

b) Initiate Cardiac Emergencies: Chest Pain Protocol.

c) Position patient (1) (2).

d) Place chest and limb leads (3) (4).

e) Turn on monitor.

f) Set patient age and a patient identifier.

g) Acquire 12-lead (5).

h) Consult with receiving facility.

i) Transmit 12-lead (6).

j) Continue patient care.

(1) Unrestricted access to the skin in the chest area, arms, and lower legs is required to allow for correct placement of electrodes. Do your best to protect the patient’s privacy. Once the electrodes are positioned and connecting leads are appropriately attached, the patient should be covered with a sheet to preserve their dignity during the procedure.

(2) If unable to place patient in the recumbent position, include this information in your hospital consult and note it in the written narrative of your patient care report.
(3) Remove electrodes from a sealed package immediately before use. Using previously unpacked electrodes or electrodes with expired date codes may impair EKG signal quality.

(4) When placing electrodes on female patients, always place the leads V3-V6 under the breast rather than on the breast.

(5) Acquisition of a 12-lead EKG should take no more than 5 minutes.

(6) Transmission of the 12-lead EKG to the receiving facility should be done en route to the receiving facility. There is no need to delay transport to transmit a 12-lead EKG.

6. INDIVIDUAL EMT APPROVAL FOR PARTICIPATION

 a) The EMT 12-Lead EKG Program is open to all Maryland EMTs that have been providing direct patient care for a minimum of one year.

 b) Clinicians must be members of an ALS company that currently owns a local system compatible 12-lead device.

7. ONGOING DEMONSTRATION OF PROFICIENCY

 After the initial training program is completed, the EMT will participate in an annual refresher training program.

8. REVIEW OF EACH CALL

 a) The clinician will submit copies of each 12-lead EKG and patient care report to their jurisdictional Quality Review Committee.
H. GLYCOPROTEIN IIb/IIIa ANTAGONIST INFUSIONS FOR INTERFACILITY TRANSPORTS (Paramedic Only)

1. PURPOSE

During interfacility transports, a paramedic may monitor a patient on a continuous IV glycoprotein IIb/IIIa infusion as long as the following criteria have been met.

2. INDICATIONS

The glycoprotein IIb/IIIa infusion must have been started by the hospital staff prior to an interfacility transfer. IV glycoprotein IIb/IIIa transports may NOT be started by the prehospital clinician in the prehospital setting.

3. CONTRAINDICATIONS

a) Patients who are clinically unstable, including but not limited to unstable vital signs and blood pressure, or current arrhythmia
b) Pediatric patients

4. PROCEDURE

a) Maintain the infusion as directed by the sending physician.
b) The sending physician must document the infusion to be administered on the patient’s transport record or transport note. This includes the concentration of the medication and the infusion rate.
c) The infusion must be maintained on an infusion pump designed for transport. The clinician must be trained in the appropriate use of the specific infusion pump. The ambulance must have an inverter to power the pump while in the vehicle.
d) The total volume of glycoprotein IIb/IIIa infused must be recorded on the patient care report.
e) The patient must be on a cardiac monitor and vital signs should be documented on the patient care report at least every 15 minutes.
f) When in doubt, contact the sending physician for medical direction.

5. SPECIAL CONSIDERATIONS

The ALS service or jurisdiction must provide and document training of the ALS clinicians on the operation of the infusion pump(s) being used. They must also have a quality improvement (QI) program monitoring the appropriateness and quality of care provided. The QI program should be directed or coordinated by, at minimum, a paramedic.
GLYCOPROTEIN IIb/IIIa ANTAGONIST
(Paramedic Only)

1. Pharmacology
Platelet glycoprotein antagonist. This agent reversibly prevents fibrinogen and von Willenbrand’s factor from binding to the glycoprotein IIb/IIIa receptor, inhibiting platelet aggregation.

2. Pharmacokinetics
Glycoprotein IIb/IIIa has a half-life of 2.5 hours. Metabolism of this drug is limited and is excreted via the kidneys.

3. Indications
Patients with acute coronary syndrome including those with Percutaneous Coronary Intervention (PCI)

4. Contraindications
a) Hypersensitivity, active internal bleeding, history of bleeding, stroke within one month, major surgery with severe trauma, severe hypotension, history of intracranial bleeding, intracranial neoplasm, arteriovenous malformation/aneurysm, aortic dissection, or dependence on renal dialysis
b) Pediatric patients

5. Side Effects/Adverse Reactions
a) Cardiovascular: Stroke, hypotension
b) Systemic: Bleeding, anaphylaxis
c) Other: Hematuria, thrombocytopenia

6. Precautions
Glycoprotein IIb/IIIa is a medication designed to inhibit the clotting factor in blood. Patients on this medication should be protected from further injuries that may cause bleeding. Attempts to start IVs should not be made without a doctor’s orders.

7. Dosage
a) INITIAL BOLUS: Given at sending facility and should be documented.
b) MAINTENANCE IV DRIP: Follow Standard Dosing. Maintain drip based on patient weight and sending physician’s orders.

IF CHEST PAIN OR HYPOTENSION DEVELOPS DURING TRANSPORT, THE PARAMEDIC MUST CONSULT WITH EITHER THE SENDING OR RECEIVING PHYSICIAN FOR FURTHER INSTRUCTIONS.
I. HEPARIN INFUSION FOR INTERFACILITY TRANSPORT
 (Paramedic only)

1. PURPOSE

 During interfacility transports, a paramedic may monitor a patient on a continuous IV heparin infusion as long as the following criteria have been met.

2. INDICATIONS

 The heparin infusion must have been started by the hospital staff prior to an interfacility transfer. IV heparin infusions may NOT be started by the prehospital clinician in the prehospital setting.

3. CONTRAINDICATIONS

 a) Patients who have had trauma or surgery to the brain, eye, spinal cord, urinary tract, joints, or retroperitoneum within the last 7 days
 b) Patients with active bleeding
 c) Third trimester pregnancy

4. PROCEDURE

 a) Follow the appropriate ALS algorithm and maintain the infusion as directed by the sending physician.
 b) The sending physician must document the infusion to be administered on the patient’s record or transport note, including the concentration of the units per hour.
 c) The infusion must be maintained on an infusion pump designed for transport, and the clinician must be trained in the appropriate use of that specific infusion pump. The ambulance must have an inverter to power the pump while in the vehicle.
 d) The total volume of heparin infused must be recorded on the patient care report.
 e) The patient must be on a cardiac monitor and vital signs should be documented on the patient care report every 15 minutes.
 f) When in doubt, contact the sending physician for medical direction.

5. SPECIAL CONSIDERATIONS

 The ALS service or jurisdiction must provide and document the training of ALS clinicians on the operation of the infusion pump(s) being used. They must also have a quality improvement (QI) program monitoring the appropriateness and quality of care provided. The QI program should be directed or coordinated by, at minimum, an ALS clinician.
HEPARIN
(Paramedic only)

1. Pharmacology
 Heparin is an anticoagulant that works by neutralizing several of the clotting factors (XIII, XII, XI, X, IX, and II).

2. Pharmacokinetics
 a) Heparin inhibits the coagulation mechanism in 3 sites:
 (1) activation of factor X
 (2) formation of thrombin from prothrombin
 (3) conversion of fibrinogen to fibrin
 b) Heparin’s effect, which is to retard or prevent blood clotting, is immediate. The half-life of intravenous heparin is 1–1.5 hours.

3. Indications
 a) Thromboembolic disease, such as pulmonary embolism deep vein thrombophlebitis, and arterial embolization
 b) Acute myocardial infarction. (Heparin may be given alone or in conjunction with thrombolytic therapy.)

4. Contraindications
 a) Patients who have had trauma or surgery to the brain, eye, spinal cord, urinary tract, joints, or retroperitoneum within the last 7 days
 b) Patients with active bleeding
 c) Third trimester pregnancy

5. Adverse Effects
 Increased potential for bleeding

6. Precautions
 a) Inadvertent infusion of too much heparin can result in over-anticoagulation and the potential for bleeding complications.
 b) If it is necessary to draw blood or start an IV while a patient is receiving heparin, extra time to hold pressure over the puncture site will be necessary to stop the bleeding.
 c) Use with caution for patients with extreme hypertension.

7. Dosage
 a) Adult: Follow the written order from the sending physician. Paramedic may transport patients at a maximum heparin drip rate of 18 units/kg per hour or 2,000 per units per hour, whichever is higher. For doses exceeding the maximum, a SCT Paramedic or nurse is required for transport.
 b) Pediatric: Not indicated.
J. INTRANASAL NALOXONE FOR BLS CLINICIANS
(COMMERCIAL EMT)

1. PURPOSE
When encountered with a patient exhibiting respiratory depression with a confirmed or suspected opioid/narcotic overdose, an EMT and EMR may administer intranasal naloxone provided the following criteria have been met.

2. INDICATIONS
A patient suffering respiratory depression caused by a known or suspected opioid/narcotic overdose

3. CONTRAINDICATIONS
a) None clinically significant in the adult patient
b) Patients less than 28 days old

4. PROCEDURE
a) Ensure that naloxone is indicated and the medication is not expired.
b) Inject volume of air into vial that is equal to desired volume of medication to be removed using a needle (blunt tip preferred) and 2 mL or 3 mL syringe.
c) Pull back on syringe plunger to remove desired volume of medication.
d) Use gradations on syringe to measure volume of medication to nearest 0.10 mL.
e) Safely remove needle from syringe and dispose of in sharps container.
f) Attach mucosal atomization device to luer-lock of syringe.
g) Place tip of mucosal atomization device in the nare and briskly push the plunger forward, administering half of the total volume of medication (up to a MAXIMUM of 1 mL per nare).
h) Repeat previous step in the other nare, delivering the remaining half of the medication.
i) Monitor patient for response and continue supportive care.

IF EMS OPERATIONAL PROGRAM USES A DIFFERENT FORMULARY/CONCENTRATION OR MEDICATION PACKAGING (E.G., PRE-FILLED SYRINGE OR AMPULE), CLINICIANS MUST RECEIVE PROPER TRAINING REGARDING SAFETY, PREPARATION, AND CONVERSION TO INTRANASAL ATOMIZATION OF THE MEDICATION.
ALERT: ALCOHOL CAN CAUSE ALTERED MENTAL STATUS BUT IS NOT COMMONLY A CAUSE OF TOTAL UNRESPONSIVENESS TO PAIN.

ALTED MENTAL STATUS: UNRESPONSIVE PERSON

1. Inclusion Criteria
 Patients may exhibit confusion, focal motor sensory deficit, unusual behavior, unresponsiveness to verbal or painful stimulus.

2. Treatment
 a) Obtain pulse oximetry, if available.
 b) Administer glucose paste (10–15 grams) between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.
 c) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
 d) Obtain pulse oximetry, if available.
 e) Administer glucose paste (10–15 grams) between the gum and cheek. Consider single additional dose of glucose paste if not improved after 10 minutes.
 f) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
OVERDOSE/POISONING: ABSORPTION

1. Inclusion Criteria
 Patient may exhibit any of the following: nausea, vomiting, diarrhea, altered mental status, abdominal pain, rapid heart rate, dyspnea, seizures, arrhythmias, sweating, tearing, defecation, constricted/dilated pupils, rash, or burns to skin.

2. Treatment
 a) Remove patient from the toxic environment by appropriately trained personnel using proper level PPE.
 b) Identify agent and mechanism of exposure.
 c) Decontaminate as appropriate.
 d) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, **OR** administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.

 e) Remove patient from the toxic environment by appropriately trained personnel using proper level PPE.
 f) Identify agent and mechanism of exposure.
 g) Decontaminate as appropriate.
 h) **If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:**
 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, **OR** administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
OVERDOSE/POISONING: INGESTION

1. Inclusion Criteria
 Patient may exhibit any of the following: nausea, vomiting, diarrhea, altered mental status, abdominal pain, rapid heart rate, dyspnea, seizures, arrhythmias, chemical burns around or inside the mouth, or abnormal breath odors.

2. Treatment
 a) Identify substance and amount ingested.
 b) Consider activated charcoal without sorbitol 1 gram/kg PO.
 c) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.

 d) Identify substance and amount ingested.
 e) Consider activated charcoal without sorbitol 1 gram/kg PO.
 f) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
OVERDOSE/POISONING: INJECTION

1. Inclusion Criteria
 Patient may exhibit any of the following: local pain, puncture wounds, reddening skin, local edema, numbness, tingling, nausea, vomiting, diarrhea, altered mental status, seizures, muscle twitching, hypoperfusion, metallic or rubber taste

2. Treatment
 a) Identify markings (insects, bites, needlestick, etc.).
 b) Do not apply distal and/or proximal constricting bands for a poisonous snakebite to an extremity. Do remove any jewelry on the affected extremity.
 c) Immobilize extremity.
 d) Apply cool packs for relief of pain only.

IF THE SNAKE IS DEAD, AND IF IT IS PRACTICAL, DELIVER IT WITH ITS HEAD INTACT. DEAD SNAKES STILL BITE!

 e) Assist patient experiencing moderate to severe allergic reaction symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine auto-injector or patient’s prescribed fast-acting bronchodilator.

 f) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.

 g) Identify markings (insects, bites, needlestick, etc.).

 h) Do not apply distal and/or proximal constricting bands for a poisonous snakebite to an extremity. Do remove any jewelry on the affected extremity.

 i) Assist patient experiencing moderate to severe allergic reaction symptoms or mild symptoms with a history of life-threatening allergic reaction with the patient’s prescribed or EMS service’s epinephrine auto-injector or patient’s prescribed fast-acting bronchodilator.

 j) If patient has respiratory depression with decreased LOC, constricted pupils, and clinician suspects an opioid/narcotic overdose:
 Aged 28 days to adult: Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 Consider additional doses of naloxone.
July 2018: Naloxone is required for Public Safety EMT and EMR (October ’17) and remains Optional Supplemental Program for BLS Commercial Services (initially implemented September ’13).

Naloxone (Narcan®)

1. **Pharmacology**
 Reverses all effects due to opioid (morphine-like) agents. This drug will reverse the respiratory depression and all central and peripheral nervous system effects.

2. **Pharmacokinetics**
 a) Onset of action is within a few minutes with intranasal (IN) administration.
 b) Patients responding to naloxone may require additional doses and transportation to the hospital since most opioids/narcotics last longer than naloxone.
 c) Has no effect in the absence of opioid/narcotic.

3. **Indications**
 To reverse respiratory depression induced by opioid/narcotic agent

4. **Contraindications**
 Patients under 28 days of age

5. **Adverse Effects**
 Opioid withdrawal

6. **Precautions**
 a) Naloxone may induce opiate withdrawal in patients who are physically dependent on opioids.
 b) Certain drugs may require much higher doses of naloxone for reversal than are currently used.
 c) Should be administered and titrated so respiratory efforts return, but not intended to restore full consciousness.
 d) Intranasal naloxone must be administered via nasal atomizer.
 e) Naloxone has a duration of action of 40 minutes; the effect of the opioid/narcotic may last longer than naloxone and patients should be encouraged to be transported.

 CLINICIANS MUST CONTACT A BASE STATION PHYSICIAN FOR PATIENTS WISHING TO REFUSE TRANSPORT AFTER BLS ADMINISTRATION OF NALOXONE.

7. **Dosage**
 a) **Adult:** Administer naloxone 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 b) **Pediatric:**
 (1) **Child aged 28 days to adult:**
 Administer 2 mg IN, dividing administration of the dose equally between the nares to a maximum of 1 mL per nare, OR administer 4 mg/0.1 mL IN in one nare.
 (2) **Child less than 28 days:**
 Not Indicated

 Repeat as necessary to maintain respiratory activity.
K. MARK I / DuoDote Kits (Atropine and 2-PAM Auto-Injectors)

1. Inclusion Criteria
 a) Nerve agents are a group of highly toxic chemicals that may be released in a WMD event. These agents act to inhibit cholinesterase, and therefore prolong the effects of acetylcholine. These agents are potent, long-acting, and all bind to acetylcholine irreversibly unless an oxime is given.
 b) Nerve agents include Tabun (GA), Sarin (GB), Soman (GD) and GF. There are also V agents, such as VX.
 c) The G-type agents evaporate (become vapor) or may be dispersed in the air by weapons. When a person inhales this vapor, effects begin within seconds to minutes.
 d) The V-type agents are oily and evaporate very slowly. They persist on the ground, foliage, etc., for long periods. Exposure to this liquid on the skin causes effects to start as soon as 10 minutes or as long as 18 hours after contact. The vapor hazard from these is not as great as from the G-type agents.
 e) Many insecticides currently in use are organophosphates and are chemically related to nerve agents. The organophosphate insecticides may have a slower onset and a longer lasting effect compared with nerve agents.
 f) Characteristic signs and symptoms may identify nerve agent poisoning. After vapor exposure, early manifestations of poisoning occur in the eyes, nose, and airway. With liquid/dermal contact exposure, early manifestations occur in the skin and the GI tract. Thus, when looking at the chart below, consider the mechanism of release and the associated signs and symptoms (refer to the chart below with the mnemonic P-SLUDGE-MC). (NOTE: This mnemonic is used for all organophosphate toxicity. Pupillary response occurs only with vapor exposure and will not be seen unless there is direct liquid contact with the eye. Urinary incontinence is also very rare.)

<table>
<thead>
<tr>
<th>Sign</th>
<th>Vapor Exposure</th>
<th>Liquid Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>✓</td>
<td>Not Seen</td>
</tr>
<tr>
<td>S</td>
<td>✓</td>
<td>Not Seen</td>
</tr>
<tr>
<td>L</td>
<td>✓</td>
<td>Not Seen</td>
</tr>
<tr>
<td>U</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>G</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>M</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Nerve Agents

Signs and Symptoms of Chemical Agents

- **P**: Pinpointing pupils
- **S**: Salivation
- **L**: Lacrimation (tearing)
- **U**: Urination
- **D**: Defecation
- **G**: Gastrointestinal; pain/gas
- **E**: Emesis (vomiting)
- **M**: Muscle twitching
- **C**: Convulsions
- **B**: Bradycardia
- **B**: Bronchospasm
- **B**: Bronchorrhea

OPTIONAL SUPPLEMENTAL PROGRAM

MARK I / DUODOTE KITS

Edition Date August 1, 2020

Release Date September 14, 2020
g) EMS clinicians must know the following MILD, MODERATE, and SEVERE signs and symptoms of nerve agent poisoning. When clinicians recognize most or all of the symptoms listed below, they must IMMEDIATELY receive treatment (first aid or buddy aid).

(2) MILD poisoning (self-aid). Casualties with mild symptoms may experience most or all of the following:

(a) Unexplained runny nose
(b) Unexplained sudden headache
(c) Sudden drooling
(d) Difficulty in seeing (dimness of vision, constricted pupil)
(e) Tightness in the chest or difficulty in breathing
(f) Wheezing and coughing
(g) Localized sweating and muscular twitching in the area of the contaminated skin
(h) Stomach cramps
(i) Nausea without vomiting

(2) MODERATE effects would be the above, but also include more severe effects such as diarrhea, moderate to severe difficulty breathing, and some skeletal-muscular twitching/fasciculations. The progression of symptoms from mild to moderate indicates either inadequate treatment or continuing exposure to the nerve agent.

(3) SEVERE symptoms. Clinicians with severe symptoms will not be able to treat themselves and must receive prompt buddy aid and medical treatment. Casualties with severe symptoms may experience most or all of the MILD symptoms plus most or all of the following:

(a) Impaired thinking
(b) Increasing wheezing and increased difficulty breathing
(c) Severe pinpoint pupils
(d) Red eyes with tearing
(e) Vomiting
(f) Severe muscular twitching and general weakness
(g) Involuntary defecation
(h) Convulsions
(i) Unconsciousness
(j) Respiratory Failure
(k) Bradycardia

h) Prevention of poisoning

(1) In the setting of an exposure to a nerve agent, the most rapid absorption occurs through the respiratory tract. When it is suddenly determined that clinicians are in the “hot zone,” do not look for the invisible vapor cloud. Clinicians should hold their breath until they don and clear their breathing apparatus or protective masks. Once masked, a clinician will then give the alarm to other clinicians. This may be done with hand signals or through the mask. If a fellow clinician is severely poisoned with altered consciousness in the hot zone, the initial, less-poisoned masked clinician should mask the casualty.
(2) When the masked casualty is severely poisoned after exposure to vapor and liquid, they should be decontaminated by removing clothing, blotting the agent (if a liquid exposure), and diluting the agent by using a flush with large amounts of water. Decontamination should be done as soon as possible, but it will usually occur in the warm zone or a safe area.

(3) When treating a severely poisoned casualty, the treating clinician should take care to avoid exposure to the liquid agent (which could occur when kneeling next to the casualty). Squatting next to the casualty while masking or treating him/her will help the caregiver to avoid exposure to liquid nerve agent.

(4) Do not administer nerve agent antidotes before actual exposure to nerve agents or development of clinical symptoms occurs. Nerve agent antidotes may degrade performance in the hot zone (creating a heat-stressed clinician) and should be administered only when symptoms and signs of nerve agent poisoning are present.

1. Treatment
 a) The ABC priorities of prehospital treatment require modification to AABCs (Antidote then ABCs). The antidote (Atropine and 2-PAM) should be given as soon as possible, because toxic exposure to the nerve agent will make ventilation difficult. If the antidote is not immediately available, prevent further exposure to the nerve agent, provide ABC support, and evacuate the patient to an area where the antidote is available.

 b) Based on signs and symptoms in a mass casualty incident (MCI) or on-site chemical testing that confirms nerve or organophosphate agent presence in a mass casualty incident, a certified EMR or EMT may administer MARK I/DuoDote kits (up to total of three kits) as buddy care to public safety personnel or when directed to do so by an ALS clinician. The midazolam 5 mg or diazepam 10 mg auto-injector (CANA) can only be administered by an ALS clinician when three MARK I/DuoDote kits are administered in a severe exposure. Medical consultation is not required in these situations.
OPTIONAL SUPPLEMENTAL PROGRAM
MARK I / DUODOTE KITS

CHEMPACK
Adult Nerve Agent Exposure Treatment

Mild Exposure
Patients who can walk and talk
who may present with miosis, rhinorhea, increased salivation, nausea

Atropine 2mg IM + Pralidoxime 600mg IM

May repeat 3-5 minutes until symptoms resolve

Moderate Exposure
Patients with mild dyspnea, ataxia, miosis, or muscle cramping

Atropine 4mg IM + Pralidoxime 1200mg IM

May repeat 3-5 minutes until symptoms resolve

Severe Exposure
Patients who may have severe respiratory distress, seizures, extreme SLUDGEM
(See below)

Atropine 6mg IM + Pralidoxime 1800mg IM + Diazepam 10mg IM OR Midazolam 10mg IM

May repeat 3-5 minutes until symptoms resolve

AUTO-INJECTORS SHOULD BE USED FOR ALL ADULT EMS PATIENTS

Medications may come packaged as either DuoDotes, Mark I Kits, ATNAA kits, individual Atropen + 600mg Pralidoxime Autoinjectors, or in individual medication vials

2mg Atropens are not available in all CHEMPACK caches

Adult Vial Medication Directions:
Atropine (0.4mg/ml in 20mL): Draw up medication in 5mL syringe (5mL)

Pralidoxime (300mg/mL): For Intramuscular (IM) injection: Add 3.3mL of sterile water into a single 1-gram vial, which results in a 300mg/mL concentration. Do not exceed 2mL per IM injection

Diazepam & Midazolam (5mg/mL in 10mL): draw up 2mL in 3mL syringe for IM administration for initial dose of 10mg IM

S– Salivation
L– Lacrimation (tear production)
U– Urination
D– Defecation
G– Gastrointestinal distress
E– Emesis
M– Muscle Twitching & Miosis (constricted pupils)
CHEMPACK

Pediatric Nerve Agent Exposure Treatment

Mild Exposure
Patients who can walk and talk who may present with miosis, rhinorrhea, increased salivation, and nausea

<table>
<thead>
<tr>
<th>Weight (Kg)</th>
<th>Atropine Dose (IM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10 kg</td>
<td>0.5mg</td>
</tr>
<tr>
<td>10 kg – 25 kg</td>
<td>1 mg</td>
</tr>
<tr>
<td>26 - 50 kg</td>
<td>2 mg</td>
</tr>
<tr>
<td>Over 50 kg</td>
<td>2 mg</td>
</tr>
</tbody>
</table>

May repeat 3-5 minutes until symptoms resolve

Moderate Exposure
Patients with mild dyspnea, ataxia, miosis, or muscle cramping

<table>
<thead>
<tr>
<th>Weight (Kg)</th>
<th>Atropine Dose (IM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10 kg</td>
<td>Atropine 1mg + Prazosin 600mg</td>
</tr>
<tr>
<td>10 kg – 25 kg</td>
<td>Atropine 2mg + Prazosin 600mg</td>
</tr>
<tr>
<td>26 kg - 50 kg</td>
<td>Atropine 2mg + Prazosin 1200mg</td>
</tr>
<tr>
<td>Above 50kg</td>
<td>Atropine 2mg + Prazosin 1200mg</td>
</tr>
</tbody>
</table>

May repeat 3-5 minutes until symptoms resolve

Severe Exposure
Patients who may have severe respiratory distress, seizures, extreme SLUD3EM (See below)

<table>
<thead>
<tr>
<th>Weight (Kg)</th>
<th>Dose (IM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 25kg</td>
<td>Atropine 2mg + Prazosin 600mg + Diazepam 2.5mg OR Midazolam 2.5mg</td>
</tr>
<tr>
<td>26 kg - 50kg</td>
<td>Atropine 4mg + Prazosin 1200mg + Diazepam 5mg OR Midazolam 5mg</td>
</tr>
<tr>
<td>Above 50kg</td>
<td>Atropine 6mg + Prazosin 1800mg + Diazepam 10mg OR Midazolam 10mg</td>
</tr>
</tbody>
</table>

May repeat 3-5 minutes until symptoms resolve

Atropine/ Prazosin may come packaged as either DUODOTE, Mark I Kits, ATNAA kits, individual Atropine + Prazosin autoinjectors, or in individual medication vials.

Treatment via Atropine & Prazosin Autoinjectors is preferred

CANA autoinjectors are not indicated for pediatric patients less than 50kg

Pediatric Vial Medication Instructions:

- **Atropine (0.4mg/mL, 20mL):** Draw-up medication in 3mL, 5mL, or 10mL syringe as indicated
- **Prazosin (300mg/mL):** Add 3.3mL of sterile water into a single 1 gram vial, which results in a 300mg/mL concentration. Do not exceed 2mL per IM injection
- **Diazepam & Midazolam (5mg/mL, 10mL):** Draw 0.2mg/kg IM to a maximum 10mg

Color Coding and unit amount for Atropens

<table>
<thead>
<tr>
<th>Color Coding</th>
<th>Unit Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 mg auto-injector (blue)</td>
<td></td>
</tr>
<tr>
<td>1 mg auto-injector (red)</td>
<td></td>
</tr>
<tr>
<td>2 mg auto-injector (green) (May not be available in all CHEMPACK caches)</td>
<td></td>
</tr>
</tbody>
</table>

SLUD3EM:
- S= Salivation
- L= Lachrymation (tear production)
- U= Urination
- D= Defecation
- G= Gastrointestinal distress
- E= Emeisis
- M= Muscle Twitching & Miosis (constricted pupils)
L. MARYLAND VACCINATION & TESTING PROGRAM

Scope of practice for paramedic personnel has been expanded to allow select immunization and Purified Protein Derivative (PPD) testing by paramedic personnel. The immunizations that are allowed to be performed include Hepatitis B, Influenza, and PPD. This program is a jurisdictional option requiring the jurisdictional medical director and the jurisdiction to authorize select trained paramedic personnel to perform these functions. There are program requirements below. Please note that you must have a written memorandum of understanding between your EMS service and the local health department before this program can be instituted.

In order to become recognized and authorized to implement the immunization and testing program for paramedics, you must complete the application and submit a copy of the health department memorandum of understanding to the Office of the State EMS Medical Director. At that time you will receive a copy of the CD-ROM that has all of the pertinent documents and instructional material, along with a CDC videotape on PPD placement and interpretation. Your jurisdiction will then be recognized as an authorized optional immunization and testing jurisdiction.

When you are implementing this program, we strongly encourage you to advise EMS personnel at risk to seek vaccination where possible.

REQUIREMENTS:

1. Medical Director: Must have a jurisdictional medical director who is willing to take responsibility for the program.
2. Must be under the Infection Control Program for the Jurisdiction.
3. Immunization record form with documentation of all pertinent information about vaccination or test, including the patient’s primary care practitioner.
4. Direct linkage with occupational medicine/employee health and a memorandum of understanding (MOU) with local public health service/department.
5. Statewide protocol approved by the EMS Board.
6. ALS resuscitation equipment (refer to The Maryland Medical Protocols for Emergency Medical Services) must be available on-site during vaccinations.
7. Must use the comprehensive training curriculum developed by MIEMSS Infection Control Committee.
8. Physician does not have to be physically present for the administration of vaccinations or tests by the trained paramedic (Vaccination and Testing Officer (VTO)).
9. Program instruction must be directed by and have participation by the jurisdictional medical director to select paramedics who will become the VTOs.
10. This is not for post-exposure prophylaxis (patient must be seen by occupational medicine/physician for consent and treatment).
11. Only Public Safety Personnel (any career or volunteer member of a fire, rescue, or EMS department, company, squad, or auxiliary; any law enforcement officer; or the State Fire Marshal or sworn member of the State Fire Marshal’s office) are eligible to receive immunizations or testing from VTOs.
12. Mechanism for meeting FDA storage and refrigeration standards for vaccines and testing with the use of the Maryland Inventory Control Sheet.

13. Mechanism for follow-up
 a) For additional vaccinations for completion of series
 b) For potential complications of vaccinations or symptoms noted on adverse event form (meeting federal reporting requirements)
 c) Patient contact phone number for complications (e.g., bad vaccine “lot”)

14. Must have a standardized informed consent form and standardized vaccine pre-screening questionnaire form.

15. Vaccinations allowable are:
 a) Influenza
 b) Hepatitis B

16. Testing
 a) PPD Screening (Intradermal)

17. Recommend 30-minute observation period (to be determined by the jurisdictional medical director) post-immunization administration with ALS personnel and equipment available.
HEPATITIS B VACCINATION

Indications:
Pre-exposure: preventive

Contraindications:
History of anaphylactic reaction to baker’s yeast

Adverse effects:
Not clinically significant

Precautions:
(1) Recipients must read and sign consent form.
(2) CDC recommends antibody testing 1–2 months after the third dose to determine immunity.

Dose:
(three total, using a 3 mL syringe with 1” 25 gauge needle)
Initial 1 mL IM (deltoid)
2nd dose 4 weeks after initial; 1 mL IM (deltoid)
3rd dose 5–6 months after 2nd dose; 1 mL IM (deltoid)

INFLUENZA VACCINATION

Indications:
(1) Persons who attend to patients at high risk for complications (e.g., the elderly)
(2) Persons with chronic medical conditions
(3) Pregnant women who will be in the second or third trimester of pregnancy during influenza season
(4) Clinicians of essential community services

Contraindications:
History of anaphylactic hypersensitivity to eggs

Adverse effects:
(1) More common: soreness at the injection site that lasts up to 2 days
(2) Less common: fever, malaise, myalgia beginning 6–12 hours after vaccination and persisting for 1 to 2 days.

Precautions:
(1) Vaccine should be delayed in the presence of acute febrile illness; administer after symptoms have abated.
(2) It takes two weeks to develop adequate antibodies against the vaccine virus strain.
(3) Optimal time for organized vaccination campaigns is usually the period from October through mid-November.
(4) Because influenza vaccine contains only noninfectious viruses, it cannot cause influenza.
(5) Recipients must read and sign consent or refusal form.

Dose: (using a 3 mL syringe with 1” 25 gauge needle)
0.5–1 mL IM (deltoid)

PURIFIED PROTEIN DERIVATIVE (PPD) TEST

Indications:
Yearly administration for health care clinicians

Contraindications:
(1) Previous positive reaction to PPD
(2) History of TB

Adverse effects:
Not clinically significant

Precautions:
Recipients must read and sign consent form.

Procedure
(1) Injection is given intradermally and should be read 48–72 hours post injection.
(2) Feel the induration with your fingertips.
(3) Measure with approved device in millimeters (mm).
 (a) Less than 5 mm is negative.
 (b) Equal to or greater than 5 mm requires clinical correlation and evaluation by jurisdictional medical director or other appropriate physician.

Note:
Do not use erythema as margins; measure only the induration.
MIH: HEMOGLOBIN A1c MONITORING (NEW '20)

Indications:
Patients enrolled in a Maryland Mobile Integrated Health program with an existing diabetes diagnosis.

Contraindications:
- a) Patients without an existing diabetes diagnosis
- b) Patients that have received an A1c test within the previous 90 days

PATIENTS WITH IRON DEFICIENCY, KIDNEY FAILURE, OR WITH LIVER DISEASE MAY DISPLAY WITH A FALSELY HIGH A1C MEASUREMENT.

Procedure:
ALS clinicians will take a sample of blood with a pointed lancet. The sample will be placed into an FDA-approved in-home A1c analyzer. Results will be documented and communicated with the patient as well as the patient’s PCP.
M. MECHANICAL CPR

1. PURPOSE
 Mechanical CPR (mCPR) devices perform chest compressions at a consistent and reliable rate and depth, never fatigue, and are not susceptible to other human factors that degrade resuscitation quality. Additionally, the use of an mCPR device while transporting an in-progress resuscitation allows for effective CPR and increases safety by allowing clinicians to be restrained during transport.

2. PRESENTATION
 Patients in cardiac arrest who have an established resuscitation in progress

3. INDICATION
 a) Active cardiac arrest resuscitation
 b) Applied in a standby mode for transport to any patient
 (1) who achieves ROSC, OR
 (2) who clinicians believe will progress to cardiac arrest

4. CONTRAINDICATION
 Patients who have not yet reached their 13th birthday

5. PROCEDURE:
 a) Application of an mCPR device may not begin until after two 2-minute cycles of manual chest compressions.
 b) Any mCPR device must be applied in a manner that limits any break in compressions to less than 10 seconds.
 c) The 10-second breaks for device application must only occur around a normal 2-minute compression interval and simultaneously while performing rhythm interpretation and defibrillation.
 d) Apply the mCPR device according to manufacturer instructions, keeping in mind that minimizing breaks in compressions to less than 10 seconds may require that an mCPR device be applied over two or more 2-minute cycles of chest compressions.
 e) Once applied, devices must be used in accordance with manufacturer recommendations, but the goal should be to limit breaks in compressions as little as possible. This goal can be accomplished by:
 (1) Only pausing the mCPR device for rhythm interpretation
 (2) Pausing only long enough to identify the rhythm, and then starting again
 (3) Delivering defibrillations while chest compressions are in progress
 f) An mCPR device (if available) should be applied in a standby mode for transport to any patient who achieves ROSC or patients who clinicians believe will progress to cardiac arrest.
6. PRECAUTIONS
 Application of an mCPR device shall not cause delays in assessing for a shockable rhythm or the initiation of manual CPR.

7. INITIAL TRAINING
 The jurisdictional medical director must certify that personnel have received a locally-approved training program prior to implementation.

8. ONGOING DEMONSTRATION OF PROFICIENCY
 The jurisdictional medical director must reaffirm that EMSOP clinicians have received annual training with the mCPR device.
THIS PAGE IS INTENTIONALLY BLANK
N. MOBILE INTEGRATED COMMUNITY HEALTH PROGRAM

1. PURPOSE
The purpose of this pilot protocol is to establish guidelines for the Mobile Integrated Community Health Pilot Program (MICHP). The MICHP is part of a jurisdictional/commercial or regional oversight committee. The oversight committee has, at a minimum, representatives from a Jurisdictional/Commercial EMS Operational Program (EMS Medical Director and EMS Operations), local health department, and local/regional hospital system(s). The EMSOP oversight committee must conduct a community gap/needs assessment to identify frequent utilizers of 9-1-1 services.

This program is established to identify individuals who frequently utilize 9-1-1 for non–life-threatening or medical reasons, and to assist in linking them with community resources and unexplored medical/social programs that will most appropriately meet their needs. The MICHP team consists of a nurse practitioner/registered nurse and experienced paramedic. The uniformed MICHP paramedic may perform an abuse/neglect evaluation, conduct a home safety check, perform vital sign acquisition (i.e., temperature, pulse, RR, BP, pulse oximetry) for the nurse practitioner/registered nurse (NP/RN), and document findings jointly with the NP/RN. The NP/RN will perform the individual assessment, medication reconciliation/compliance, make referrals, interface with the primary health care professional/physician, and make recommendations to the patient.

2. INDICATIONS
Individuals who may qualify for a home visit by the MICHP team include:

a) Patients who have called 9-1-1 for any medically-related reason five times in any six-month interval (individual’s consent required) or

b) Patients who are referred to the MICHP by other allied health professionals or EMS clinicians (individual’s consent required)

3. PRECAUTIONS
Upon initiation of the home visit, if any individual were to exhibit any signs or symptoms that would require transport to an emergency department, the MICHP team will contact the county dispatch center who will be directed to generate an emergent response for that individual.

The MICHP paramedic will perform all assessments and care based on current *Maryland Medical Protocols for Emergency Medical Services* until the appropriate EMS resource’s arrival; care may then be transferred to that EMS unit. The NP/RN cannot direct the paramedic to perform any skill or medical intervention that is not within his or her scope of practice nor provide “Medical Consultation” as referenced in *The Maryland Medical Protocols for Emergency Medical Services*.

4. CONTRAINDICATIONS
Individuals who will not qualify for this program include:

a) Individuals already receiving care from a patient–centered medical home (PCMH) or who have already established individual home health care or use a visiting nurse agency
b) Individuals who refuse participation by revoking written consent, verbal refusal of care at time of visit, or integration into programs as in 4. a) above

c) Patients who have not reached their 18th birthday

5. PROCEDURE

After an individual has consented to be included in this program, a scheduled home visit will be performed as follows:

a) Uniformed paramedic will:
 (1) Provide a recognized uniformed presence for individual reassurance and familiarity.
 (2) Assess the individual’s home.
 (a) Assess for signs of neglect or abuse.
 (b) Assess for safety issues (e.g., slip/fall risk, smoke detector, fire, exposed electrical).
 (3) Obtain basic vital signs.
 (a) Heart rate
 (b) Blood pressure
 (c) Pulse oximetry
 (d) Respiratory quality and rate
 (e) Temperature
 (f) Weight

PARAMEDIC WILL NOT BE PERFORMING BLOOD DRAWS (WITH THE EXCEPTION OF BLOOD GLUCOSE), MEDICATION ADMINISTRATION, OR ALS INTERVENTIONS UNLESS AN IMMEDIATE LIFE-THREATENING CONDITION HAS BEEN IDENTIFIED AND THE 9-1-1 CENTER HAS BEEN NOTIFIED AND AN EMS RESPONSE INITIATED.

b) NP/RN will
 (1) Evaluate for any immediate life-threatening condition.
 (2) Assess for signs of neglect or abuse.
 (3) Review vital signs.
 (4) Obtain and review the individual’s past medical history.
 (5) Determine the individual’s family and social history.
 (6) Review medication.
 (7) Review behavioral health.
 (8) Conduct a basic physical assessment including a focused review of systems.
 (9) Make appropriate health professional contacts, medication modifications education, and referrals

6. MEDICAL CONSULTATION as defined in The Maryland Medical Protocols for Emergency Medical Services

a) Obtained through jurisdictional/commercial EMS medical director or designated base station

b) Paramedics cannot accept orders from primary care physicians on the phone or on-scene unless individual has an immediate life-threatening condition and the physician is going to the hospital with individual on EMS unit.
7. DOCUMENTATION AND DATA COLLECTION
 a) All data (by paramedic/NP/RN) will be collected in a patient care record that will have a data set that will meet the required QA/QI performance measure of section 8 of this Protocol.
 b) The MICH program will establish policies and procedures for sharing of protected health information across allied health, social services, and community organizations, with resources available for patients.
 c) In the event that an immediate life-threatening condition is identified and the MICHPP Paramedic initiated EMS care:
 (1) The MICHPP paramedic shall complete an entire eMEDS® report (or Commercial EMSOP equivalent) documenting care provided.
 (2) The NP/RN will complete the MICH patient care report documenting the activation of an EMS response due to immediate life-threatening condition and NP/RN individual care provided.

8. QUALITY ASSURANCE/QUALITY IMPROVEMENT
 a) All calls will be reviewed by an EMSOP QA Committee consisting of Nursing, EMS, Administrative, and EMS Medical Director.
 b) Data reports will be generated monthly (for the first year, and then quarterly) to the Office of the State EMS Medical Director and to the Oversight Committee.
 c) The MICH metrics for reporting are as follows:
 (1) The number of patients that qualified, and the number that have consented and enrolled in the MICHPP and the number that refused (ideally with the reason for refusal)
 (2) The number and frequency of EMS transports and encounters for the recruited MICH patients (trending the access of health care services) for both pre- and post- enrollment of the patient into the MICHPP
 (3) Aggregate summary of patient satisfaction survey (completed upon conclusion of each visit)
 (4) Patient Quality of Life survey scores for both pre- and post- enrollment of the patient into the MICHPP (CDC HRQOL–4, below)
 (5) Any problems identified in complying with or applying the pilot program by the NP, RN, or Paramedic
 (6) Any untoward events or formal patient complaints with detailed explanation
 (7) Any increase of the number and percent of patients utilizing a primary care clinician (PCP) (if none upon enrollment)
 (8) Number of referrals to additional allied health, social services, or programs that the MICHPP determines as beneficial per patient and recruited patient compliance
 (9) Number and percent of medication inventories conducted with issues identified and communicated to PCP
 (10) Monthly run chart reporting and/or pre-post emergency department intervention comparison
 (11) Where possible, cost expenditures and cost savings (part of quarterly and annual reporting)
 (12) Number and percent of safety-related interventions (physical environment assessment tool and Hendrich fall risk assessment tool)
Healthy Days Core Module (CDC HRQOL–4)
(The numbers behind answers are for coding purposes.)

1. Would you say that in general your health is:
 Please Read
 a. Excellent 1
 b. Very good 2
 c. Good 3
 d. Fair or 4
 e. Poor 5
 Do not read these responses
 Don't know/Not sure 7
 Refused 9

2. Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good?
 a. Number of Days --
 b. None 88
 Don't know/Not sure 77
 Refused 99

3. Now thinking about your mental health, which includes stress, depression, and problems with emotions, for how many days during the past 30 days was your mental health not good?
 a. Number of Days --
 b. None 88 (If both Q2 and Q3 = "None," skip next question)
 Don't know/Not sure 77
 Refused 99

4. During the past 30 days, for about how many days did poor physical or mental health keep you from doing your usual activities, such as self-care, work, or recreation?
 a. Number of Days --
 b. None 88
 Don't know/Not sure 77
 Refused 99
Hendrich II Fall Risk Model™

<table>
<thead>
<tr>
<th>Condition</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confusion</td>
<td>4</td>
</tr>
<tr>
<td>Disorientation</td>
<td></td>
</tr>
<tr>
<td>Impulsivity</td>
<td></td>
</tr>
<tr>
<td>Symptomatic Depression</td>
<td>2</td>
</tr>
<tr>
<td>Altered Elimination</td>
<td>1</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1</td>
</tr>
<tr>
<td>Vertigo</td>
<td></td>
</tr>
<tr>
<td>Male Gender</td>
<td>1</td>
</tr>
<tr>
<td>Administered Antiepileptics</td>
<td>2</td>
</tr>
<tr>
<td>Administered Benzodiazepines</td>
<td>1</td>
</tr>
</tbody>
</table>

Get Up & Go Test

<table>
<thead>
<tr>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to rise in a single movement – No loss of balance with steps</td>
<td>0</td>
</tr>
<tr>
<td>Pushes up, successful in one attempt</td>
<td>1</td>
</tr>
<tr>
<td>Multiple attempts, but successful</td>
<td>3</td>
</tr>
<tr>
<td>Unable to rise without assistance during test (OR if a medical order states the same and/or complete bed rest is ordered)</td>
<td>4</td>
</tr>
<tr>
<td>If unable to assess, document this on the patient chart with the date and time</td>
<td></td>
</tr>
</tbody>
</table>

A Score of 5 or Greater = High Risk

©2007 AHI of Indiana Inc. All Rights Reserved. US Patent (US20050182305) has been allowed. Reproduction and use prohibited except by written permission from AHI of Indiana Inc.
O. NALOXONE “LEAVE BEHIND”

1. PURPOSE
Naloxone is a prescription medication indicated for the reversal of respiratory depression or unresponsiveness due to opioid overdose. Increasing the accessibility and availability of naloxone to family members, close friends, or the public, specifically those at risk for an opioid overdose, may reduce the chance of a prolonged hypoxic event or eventual cardiac arrest.

2. INDICATIONS
 a) Following an administration of naloxone prior to arrival of EMS or as described by the Maryland Medical Protocols for Emergency Medical Clinicians or
 b) Following evaluation by a crisis intervention team at a fire/EMS station (e.g., Safe Station for opioid treatment referral) that has identified an opioid dependent individual when immediate placement cannot occur and the individual is released.

3. CONTRAINDICATIONS
 a) “Leave Behind” naloxone shall not be dispensed to anyone who has not yet reached their 18th birthday.

4. PROCEDURE
 a) Following completion of all general patient care, which may include a patient-initiated refusal of care, naloxone hydrochloride(s) and necessary paraphernalia that has been approved by the EMS Operational Program in accordance with Maryland Department of Health Guidelines may be issued.
 b) Document the distribution of naloxone in the patient care report as required by the EMS Operational Program.
P. PELVIC STABILIZATION BINDER DEVICE
All levels of EMS clinicians, if appropriately trained in the device

1. INDICATIONS
All of the following blunt trauma patients with physical findings indicative of pelvic fracture should have a Pelvic Stabilization Binder Device applied.
 a) Evidence of pelvic instability on examination of the pelvis
 b) Patients complaining of pelvic pain on examination of the pelvis
 c) Pain on iliac compression
 d) Pain on compression of the pubic symphysis
 e) Blood at the urethral meatus
 f) Vaginal bleeding
 g) Perineal or scrotal hematoma
 h) All blunt trauma patients with an unreliable physical exam and significant mechanism of injury may be considered for application of a Pelvic Stabilization Binder Device.

PREGNANCY IS NOT A CONTRAINDICATION TO THE APPLICATION OF THE PELVIC STABILIZATION BINDER DEVICE WHEN INDICATED.

2. CONTRAINDICATIONS
 a) Patient for whom the smallest available pelvic stabilization binder is too wide and places pressure on abdomen or chest
 b) Children under 144 cm (4'8") will generally NOT fit small-size adult pelvic stabilizing devices. (NEW '20)

3. PROCEDURE
 a) Assess for pelvic instability.
 In order to not increase bleeding, only one exam should be performed to evaluate for pelvic fracture. Multiple exams will disrupt clot formation.
 b) Identify the greater trochanter of each femur.
 The greater trochanter is the bony prominence of the lateral upper thigh.
 c) Identify the anterior superior iliac spine.
 d) Check size with estimating stabilization device and center at the greater trochanter. Ensure the top of the binder does not go above the anterior superior iliac spine.
 e) The patient should be placed in a supine position prior to application of the pelvic stabilization binder device.
 f) Place pelvic binder around the patient, centered at the level of the greater trochanter.
 g) If a backboard is used, place the binder on the backboard prior to placing the patient on the backboard. (NEW '20)
 h) Ensure patient has been undressed and adequate exposure is provided.
 i) Tighten the binder as directed by the manufacturer’s instructions for the specific stabilization binder.
 j) Once pelvic stabilization binder device is applied, do not remove until directed to do so by a physician.
4. PRECAUTIONS
 a) Incorrectly placing the pelvic stabilization binder device at the level of the iliac wing could cause harm by widening the pelvic fracture. Assess after application of the pelvic stabilization binder device.
 b) Continue with patient care.
 c) EMS clinicians should also assess distal pulses before and after the application of the pelvic stabilization binder device.
 d) For EMS units with long transport times and with patients requiring large volumes of fluid resuscitation, the patient will need to be periodically monitored to make sure that the device is not becoming too tight due to expansion of the pelvic area from accumulation of fluids that have third spaced to the pelvic area.
 e) If clinicians feel the device is becoming too tight, it should be slowly loosened and then reapplied.
Q. RAPID SEQUENCE INTUBATION – ADULT (NEW '20)

1. Rapid Sequence Intubation (RSI) Optional Supplemental Program

a) Indications
 (1) Inability to tolerate laryngoscopy, and:
 (a) GCS less than or equal to 8 with respiratory rate less than or equal to 8
 or greater than or equal to 35 or
 (b) GCS less than or equal to 8 with oxygen saturation less than or equal to
 90% on non-rebreather face mask
 (2) On-line medical direction for RSI may be requested in the following
 situations:
 (a) GCS less than or equal to 8 with clenched jaw or inability to adequately
 suction airway, and without above respiratory parameters
 (b) Respiratory extremis with contraindication to noninvasive ventilation
 (CPAP)
 (c) Burns: inhalational burn with objective signs of developing airway
 compromise
 (d) Critically ill or severely injured patient with imminent airway compromise

b) Contraindications
 (1) Patients who have not yet reached their 15th birthday

c) Preparation
 (1) Pre-oxygenate with nasal cannula oxygen 15 lpm and bag valve mask at-
 tached to high-flow oxygen
 (2) Monitor vital signs q5min, continuous pulse oximetry, ETCO₂, and cardiac
 rhythm
 (3) Ensure functioning IV/IO and fluid therapy as per protocol.
 (4) Evaluate for difficult airway.
 (5) Perform focused RSI neurologic exam.
 (6) Prepare equipment
 (a) Intubation equipment
 (b) Bag-Valve-Mask (BVM)
 (c) ET tube introducer (bougie)
 (d) Suction
 (e) RSI medications
 (f) Alternative airway device
 (g) Cricothyroidotomy equipment
 (h) Video laryngoscopy equipment

d) RSI Procedure
 (1) Sedation
 Adequate sedation must be provided to prevent awareness during paralysis
 from neuromuscular blockade.
Etomidate may be used for sedation in patients who are aware of their surroundings.

Initial dose: Administer 0.3 mg/kg IVP over 30–60 seconds. If the patient is hypotensive or the clinician suspects hypovolemia, the initial dose will be 0.15 mg/kg IVP over 30–60 seconds.
Repeat dose: May repeat 0.15 mg/kg IVP in 2–3 minutes if inadequate sedation.

OR

Ketamine is preferred for patients who are aware of their surroundings or have hypotension or possible hypovolemia.

Initial dose: Administer 2 mg/kg IVP over 60 seconds.
Repeat dose: May repeat dose of 2 mg/kg IVP over 60 seconds in 2-3 minutes if inadequate sedation.

OR

Midazolam can be considered for patients with isolated head injury and elevated blood pressure, especially with possible seizure activity. Midazolam should not be used for patients with hypotension, and should be avoided with possible hypovolemia.

Dose: Administer 0.1 mg/kg IVP over 1–2 minutes.
Maximum single dose is 5 mg.

Only one sedative agent should be administered prior to succinylcholine unless otherwise directed by medical consultation.

(2) In-line cervical spine stabilization shall be maintained by second caregiver for trauma patients.

(3) Administer paralytic medication.

Succinylcholine: Administer 1.5 mg/kg rapid IVP/IO. Maximum single dose is 200 mg. If inadequate paralysis after 2-3 minutes, verify IV/IO patency. Repeat succinylcholine 1 mg/kg IVP/IO. Maximum single dose is 200 mg.

Contraindications for succinylcholine:
(a) Burns greater than 24 hours old
(b) Spinal cord injury greater than 24 hours old
(c) Known neuromuscular disease (Guillain-Barre syndrome, myasthenia gravis, amyotrophic lateral sclerosis, muscular dystrophy)
(d) Chronic renal failure on hemodialysis/Presence of hemodialysis access
(e) Malignant hyperthermia

OR

Vecuronium: 0.1 mg/kg IVP/IO; if inadequate paralysis after 2-3 minutes, verify IV/IO patency. Repeat vecuronium 0.05 mg/kg IVP/IO. Vecuronium is the preferred paralytic for patients with a history of malignant hyperthermia or contraindications for succinylcholine.

WHEN VECURONIUM IS USED, MAINTENANCE OF SEDATION MUST BE ASSURED. THE PATIENT MAY NOT SHOW TRADITIONAL SIGNS OF VENTILATORY BUCKING.

(4) Intubate trachea and verify ET placement.
e) Successful Endotracheal Tube Placement
(1) Secure ET.
(2) Ventilate the patient at a rate that maintains an ETCO$_2$ of 35-40 mmHg. For the head-injured patient with signs/symptoms of herniation, target ETCO$_2$ of 30 mmHg.
(3) If significant resistance to ventilation occurs as succinylcholine wears off (4–5 minutes), refer to Ventilatory Difficulty Secondary to Bucking Protocol.

f) Unsuccessful Endotracheal Tube Placement
(1) Place an airway adjunct (OPA or NPA) and apply high-flow oxygen by nasal cannula (no desat).
(2) Resume BVM ventilation for at least 30 seconds and attempt to correct hypoxia, if present. If unable to ventilate, see "If Unable to Ventilate" below.
(3) Reevaluate airway strategies and consider additional oral ET intubation attempt.
(4) If unsuccessful, resume BVM ventilation.
(5) Insert an approved alternative airway device (refer to Laryngeal Mask Airway Optional Supplemental Program or Laryngeal Tube Airway Device procedure).
(6) Attach capnography and ventilate to ETCO$_2$ level of 35-40 mmHg. For head-injured patients with signs/symptoms of herniation, target ETCO$_2$ of 30 mmHg.
(7) If significant resistance to ventilation occurs as succinylcholine wears off (4–5 minutes), or if patient exhibits difficulty in tolerating an approved alternative airway device as succinylcholine wears off, refer to Ventilatory Difficulty Secondary to Bucking Protocol.

g) If Unable to Ventilate
Insert an approved alternative airway device (refer to Alternative Airway Device Protocol).

h) If still unable to ventilate using an approved alternative airway device, remove it and perform cricothyroidotomy (refer to Cricothyroidotomy Protocol). (NEW ‘20)

2. Ventilatory Difficulty Secondary to Bucking or Combativeness in Intubated Patients

a) Indication
Patients successfully intubated with an endotracheal tube, an approved alternative airway device, or cricothyroidotomy, for whom the ability to provide manual or mechanical ventilation is impaired secondary to bucking or combativeness

b) Contraindication
Unsecured airway
c) Procedure

(1) Consider additional sedation

Etomidate

Dose: Administer 0.3 mg/kg IVP over 30–60 seconds. If the patient is hypotensive or the clinician suspects hypovolemia, the initial dose will be 0.15 mg/kg IVP over 30–60 seconds.

May repeat 0.15 mg/kg IVP every 15 minutes to a total of 3 doses.

OR

Ketamine may be preferred for patients who have hypotension or possible hypovolemia, or if ventilatory difficulty is thought to be the result of pain response.

Dose: Administer 2 mg/kg IVP/IO over 60 seconds. May repeat 2 additional doses of 1 mg/kg for IVP/IO every 10–15 minutes to a total of 3 doses as needed.

Additional doses require medical consultation.

OR

Midazolam can be considered for patients with isolated head injury and elevated blood pressure, especially with possible seizure activity. Midazolam should not be used for patients with hypotension, and should be avoided with possible hypovolemia.

Dose: Administer 0.1 mg/kg IVP over 1–2 minutes, titrated to abate bucking and relax ventilation while maintaining systolic BP greater than 90 mmHg (110 mmHg if injuries include a suspected head injury). Maximum single dose is 5 mg.

Additional doses require medical consultation.

(2) If ventilatory difficulty is thought to be the result of pain response, **Ketamine may be used as above.**

OR

Opioid may be used per Pain Management Protocol in addition to, or instead of, midazolam, ketamine, or etomidate. Titrate to abate bucking and relax ventilation while maintaining systolic BP greater than 90 mmHg.

SEDATION MUST BE PROVIDED PRIOR TO VECURONIUM FOR A PATIENT WHO IS EITHER RESPONSIVE TO STIMULUS, OR WHO MAY BECOME RESPONSIVE TO STIMULUS DURING NEUROMUSCULAR BLOCKADE. USE OF VECURONIUM REQUIRES FUNCTIONING ETCO₂ MONITORING. VECURONIUM MAY ONLY BE USED IF CONTINUOUS, BREATH TO BREATH ETCO₂ MONITORING CAN BE PROVIDED.

(3) If significant resistance to ventilation continues despite adequate sedation and analgesia, the paramedic may administer:

(a) Vecuronium 0.05 mg/kg IVP. Maximum single dose is 10 mg.

(b) Dose may be repeated in 2-3 minutes, if necessary.

(c) **Maintenance of amnesia**

Follow above dosing of either etomidate or ketamine with required repeat dosing every 10–15 minutes.
(4) Continue to monitor oxygen saturation and ventilate to desired ETCO₂.
(5) Obtain on-line medical direction if further problems present.

3. Protocol for Cricothyroidotomy (Surgical and Needle)

a) Indications
(1) Inability to ventilate despite having tried BVM with oropharyngeal/nasopharyngeal airway, ET placement, and an alternative airway device (if not contraindicated)
(2) Inability to place ET in the setting of life-threatening upper airway hemorrhage
(3) Foreign body completely obstructing upper airway that cannot be removed via BLS maneuvers or Magill forceps with direct visualization

b) Contraindications
(1) Patients under the age of 8 should not receive surgical cricothyroidotomy. They may receive only needle cricothyroidotomy. (NEW ’20)

c) Preparation
(1) Prepare suction and cricothyroidotomy kit.
(2) Begin at sternal notch and locate cricoid cartilage.
(3) Palpate cricothyroid membrane anteriorly between cricoid cartilage and thyroid cartilage.
(4) Prepare skin with betadine or alcohol swabs.

d) Surgical Cricothyroidotomy
(1) Clinicians must use a designated technique and procedure for establishing the airway through the cricothyroid membrane that has been approved by the program medical director.
(2) Insert a 6.0 mm cuffed ET tube, using the natural curve of tube.
(3) Insert ET tube to just beyond cuff.
(4) Inflate cuff and ventilate patient.
(5) Monitor oxygen saturation and ETCO₂ level.
(6) Secure ET tube. (Do not cut or trim ET tube.)
(7) If significant resistance to ventilation develops, or if patient develops difficulty in tolerating successful cricothyroidotomy, refer to Ventilatory Difficulty Secondary to Bucking or Combativeness Protocol.
Protocol for Cricothyroidotomy (Continued)
e) Needle Cricothyroidotomy
 (1) Insert 12- or 14-gauge over-the-needle catheter through the
cricothyroid membrane at a 45-degree angle toward the feet.
 Aspiration of air with a syringe indicates tracheal entry.
 (2) Hold needle in place and advance catheter, then remove needle.
 (3) Attach catheter hub to intermittent jet oxygen insufflator valve.
 (4) Manually secure catheter at hub at all times to prevent kinking or
 displacement.
 (5) Monitor oxygen saturation.
 (6) If significant resistance to ventilation develops, or if patient develops
difficulty in tolerating cricothyroidotomy, refer to Ventilatory Difficulty
Secondary to Bucking or Combativeness Protocol.
R. RAPID SEQUENCE INTUBATION – PEDIATRIC
(For children who have not yet reached their 15th birthday)

1. Rapid Sequence Intubation (RSI) Optional Supplemental Program

a) Indications
 (1) Inability to tolerate laryngoscopy and have the following:
 (a) GCS less than or equal to 8, indicated by a patient that will not: open
 eyes, cry, say words, or show purposeful movement in response to pain-
 ful stimulus.

 AND

 (b) Respiratory insufficiency, demonstrated by oxygen saturation less than or
 equal to 90% on non-rebreather face mask, respiratory rate less than or
 equal to 8, or respiratory rate greater than or equal to 45 (age less than 1
 yr), greater than or equal to 40 (age 1–5 yrs), greater than or equal to 35
 (age 6–9 yrs) with signs of air hunger and accessory muscle use.

 PATIENTS WITH AN IDENTIFIED DIFFICULT AIRWAY WHO CAN BE BAGGED TO AN OXYGEN
 SATURATION GREATER THAN 90% REQUIRE ON-LINE MEDICAL DIRECTION FOR RSI,
 PREFERABLY FROM A PEDIATRIC BASE STATION.

 (2) On-line medical direction for RSI may be requested (preferably from a
 Pediatric Base Station), in the following situations:

 (a) GCS less than or equal to 8 with clenched jaw, inability to
 adequately suction airway, and without above respiratory
 parameters

 (b) Respiratory extremis with contraindications to nasotracheal
 intubation (respiratory rate greater than or equal to 35 with air hunger,
 use of accessory muscles, and oxygen saturation less than or equal to
 90% on non-rebreather face mask)

 (c) Identified difficult airway patient with a GCS less than or equal
 to 8 and signs of respiratory insufficiency who cannot tolerate
 laryngoscopy but is able to be bagged to an oxygen saturation greater
 than 90%

b) Contraindications
 (1) Conditions that may cause hyperkalemia:
 (a) Burns greater than 24 hours old
 (b) Spinal cord injury greater than 24 hours old
 (c) Known neuromuscular disease (Guillain-Barré Syndrome,
 myasthenia gravis, amyotrophic lateral sclerosis,
 muscular dystrophy)
 (d) Chronic renal failure on hemodialysis/presence of hemodialysis access

 (2) History of malignant hyperthermia
c) Preparation
 (1) Pre-oxygenate with 90–100% oxygen.
 (2) Monitor oxygen saturation with pulse oximetry and EKG.
 (3) Ensure functioning IV and fluid therapy as per protocol.
 (4) Evaluate for difficult airway.
 (5) Perform focused RSI neurologic exam.
 (6) Prepare equipment
 (a) Intubation kit: Recommended to carry both cuffed and uncuffed ET tubes
 for patients less than 8 years of age or 25 kg.
 (b) Bag-Valve-Mask (BVM) with manometer. (Manometer may be part of the
 BVM or separate.)
 (c) Suction
 (d) RSI kit
 (i) Prepare medications
 (ii) Alternative airway device, Cricothyroidotomy equipment
 (e) Capnograph

d) RSI Procedure
 (1) Adequate sedation must be provided to prevent awareness during paralysis
 from neuromuscular blockade.

 Etomidate, if available, will be the preferred agent for patients who are
 aware of their surroundings and do not have hypotension or possible hypo-
 volemia.

 Dose: Administer 0.3 mg/kg IVP over 30–60 seconds. If the patient is
 hypotensive or the provider suspects hypovolemia, the initial dose will be
 0.15 mg/kg IVP over 30–60 seconds. May repeat 0.15 mg/kg IVP in 2–3
 minutes if inadequate sedation.

 Ketamine may be used if etomidate is unavailable, and may be preferred for
 patients who have hypotension or possible hypovolemia.

 Dose: Administer 2 mg/kg IVP over 60 seconds.

 Midazolam should be considered for patients with isolated head injury and
 elevated blood pressure, especially with possible seizure activity. Midazolam
 should not be used for patients with hypotension, and should be avoided
 with possible hypovolemia.

 Dose: Administer 0.05 mg/kg IVP over 1–2 minutes. Maximum
 single dose is 5 mg.

 (a) **Hold for** BP less than 60 in neonates (patients less than 28 days old),
 less than 70 in infants (patients less than 1 year of age), less than [70
 + (2 x years) = systolic BP] for patients greater than 1 year of age.

 (2) For patients with head injury or suspected increased intracranial
 pressure, administer lidocaine 1 mg/kg IVP over 1–2 minutes.

 (3) If patient is less than 8 years of (or if age unknown and using ET tube smaller
 than 6.0), pretreat patient with atropine 0.02 mg/kg IVP.
OPTIONAL SUPPLEMENTAL PROTOCOL
RAPID SEQUENCE INTUBATION – PEDIATRIC
EMT - PARAMEDIC ONLY

(4) In-line cervical spine stabilization by second caregiver (in trauma setting)
(5) Apply cricoid pressure (by third caregiver).
(6) Succinylcholine: Administer 1.5 mg/kg rapid IVP.
(7) Intubate trachea and verify ET placement.
(8) If inadequate relaxation after 2–3 minutes, repeat succinylcholine 1.0 mg/kg IVP.

e) Successful Endotracheal Tube Placement
 (1) Release cricoid pressure and secure ET.
 (2) Ventilate to ETCO₂ of 30–32 mmHg.
 (3) If significant resistance to ventilation occurs as succinylcholine wears off (4–5 minutes), refer to Ventilatory Difficulty Secondary to Bucking Protocol.

f) Unsuccessful Endotracheal Tube Placement
 (1) Maintain cricoid pressure and resume BVM ventilation for 30 seconds.
 (2) If unable to ventilate, see “If Unable to Ventilate” below.
 (3) Reattempt oral ET intubation.
 (4) If unsuccessful, resume BVM ventilation for 30 seconds.
 (5) Insert a laryngeal mask airway designed to facilitate hospital placement of an endotracheal tube (see Airway Management: Laryngeal Mask Airway Optional Supplemental Program).

g) If Unable to Ventilate
 If unable to ventilate, verify appropriate oropharyngeal airway placement and reposition BVM for optimal mask seal. If still unable to ventilate, refer to Needle Cricothyroidotomy Protocol.

2. Ventilatory Difficulty Secondary to Bucking or Combativeness in Intubated Patients

a) Indication
 Patients successfully intubated with an endotracheal tube, or needle cricothyroidotomy, for whom the ability to provide manual or mechanical ventilation is impaired secondary to bucking or combativeness.

b) Contraindication
 Unsecured airway

c) Procedure
 (1) Etomidate, if available, will be the preferred agent for patients who are aware of their surroundings and do not have hypotension or possible hypovolemia.
 Dose: Administer 0.3 mg/kg IVP over 30–60 seconds. If the patient is hypotensive or the provider suspects hypovolemia, the initial dose will be 0.15 mg/kg IVP over 30–60 seconds. May repeat 0.15 mg/kg IVP in 2–3 minutes if inadequate sedation.
 OR
Ketamine may be used if etomidate is unavailable, and may be preferred for patients who have hypotension or possible hypovolemia, or if ventilatory difficulty is thought to be the result of pain response.

Dose: Ketamine: 2 mg/kg IVP over 60 seconds. May repeat 1 mg/kg IVP every 10–15 minutes to a total of three doses as necessary.

Additional doses require medical consultation.

OR

Midazolam should be considered for patients with isolated head injury and elevated blood pressure, especially with possible seizure activity. Midazolam should not be used for patients with hypotension, and should be avoided with possible hypovolemia.

Dose: Administer 0.05 mg/kg IVP over 1–2 minutes, titrated to abate bucking and relax ventilation while maintaining systolic BP: greater than 60 in neonates, 70 in infants, [70 + (2 x years) = systolic BP] for patients greater than 1 year of age. Maximum single dose is 5 mg.

(2) If ventilatory difficulty is thought to be the result of pain response,

Ketamine: Dose: 2 mg/kg IVP over 60 seconds. May repeat 1 mg/kg IVP every 10–15 minutes as necessary to a total of three doses as necessary.

Additional doses require medical consultation.

OR

Opioid may be used per Pain Management Protocol in addition to, or instead of, midazolam, ketamine, or etomidate. Titrate to abate bucking and relax ventilation while maintaining systolic BP greater than 60 in neonates, 70 in infants, [70 + (2 x years) = systolic BP] for patients greater than 1 year of age.

(3) If significant resistance to ventilation continues, the paramedic may administer:

(a) Vecuronium 0.05 mg/kg IVP (may not be used for patients with needle cricothyroidotomy because of inability to monitor breath to breath ETCO₂). Maximum single dose is 10 mg.

PRE-SEDATION MUST BE PROVIDED WHEN VECURONIUM IS ADMINISTERED TO A PATIENT WHO IS EITHER RESPONSIVE TO STIMULUS OR MAY BECOME RESPONSIVE TO STIMULUS DURING NEUROMUSCULAR BLOCKADE. VECURONIUM MAY ONLY BE USED IF CONTINUOUS, BREATH TO BREATH ETCO₂ MONITORING CAN BE PROVIDED.

(b) Dose may be repeated in 2-3 minutes if necessary.

(c) Maintenance of Amnesia

Follow above dosing of either etomidate or ketamine with required repeat dosing every 10–15 minutes.
(4) Continue to monitor oxygen saturation and ventilate to desired ETCO₂.
(5) Obtain on-line medical direction (preferably from a Pediatric Base Station), if further problems present.

3. Protocol for Cricothyroidotomy
Surgical (for 8 years old or greater) and Needle

a) Indications
(1) Inability to ventilate despite having tried BVM with oropharyngeal/ nasopharyngeal airway, ET placement, and alternative airway device (if not contraindicated)
(2) Inability to place ET in the setting of life-threatening upper airway hemorrhage
(3) Completely obstructing upper airway foreign body that cannot be removed via BLS maneuvers or Magill forceps with direct visualization

b) Preparation
(1) Prepare suction and cricothyroidotomy kit.
(2) Begin at sternal notch and locate cricoid cartilage.
(3) Palpate cricothyroid membrane anteriorly between cricoid cartilage and thyroid cartilage.
(4) Prepare skin with betadine or alcohol swabs.

Surgical Cricothyroidotomy for 8 years old or greater
(1) Stabilize thyroid cartilage and make vertical incision (1–1 1/2 inches) over cricothyroid membrane. Alternatively, a needle puncture dilator device may be utilized.
(2) Palpate cricothyroid membrane with gloved finger and carefully make transverse incision through membrane. Insert scalpel handle and rotate 90 degrees.
(3) Insert a 5 to 6.0 mm cuffed ET tube, using the natural curve of tube.
(4) Insert ET tube to just beyond cuff.
(5) Inflate cuff and ventilate patient.
(6) Monitor oxygen saturation and ETCO₂ carbon dioxide level.
(7) Secure ET tube. (Do not cut or trim ET tube.)
(8) If significant resistance to ventilation develops, or if patient develops difficulty in tolerating successful cricothyroidotomy, refer to Ventilatory Difficulty Secondary to Bucking or Combativeness Protocol.

ONLY NEEDLE CRICOPTHYROIDOTOMY SHOULD BE PERFORMED FOR PATIENTS LESS THAN AGE 8 WHO MAY REQUIRE CRICOPTHYROIDOTOMY.

d) Needle Cricothyroidotomy
(1) Insert 12- or 14-gauge over-the-needle catheter through the cricothyroid membrane at a 45-degree angle toward the feet. Aspiration of air with a syringe indicates tracheal entry.
(2) Hold needle in place and advance catheter, then remove needle.
(3) Attach catheter hub to intermittent jet oxygen insufflator valve.
(4) Manually secure catheter at hub at all times to prevent kinking or displacement.
(5) Monitor oxygen saturation.
(6) If significant resistance to ventilation develops, or if patient develops difficulty in tolerating cricothyroidotomy, refer to Ventilatory Difficulty Secondary to Bucking or Combativeness Protocol.

4. Pediatric RSI Quality Assurance Process

a) Individual Paramedic Approval for Pediatric RSI Pilot Participation
 (1) Successful completion of small group training includes all of the following:
 (a) Classroom lecture
 (b) Mannequin instruction
 (c) Must demonstrate proficiency through skills testing and written test
 (2) Successful completion of individualized operating room training
 (a) Individual operating room training with Pediatric/Critical Care/Anesthesiology Attending approved by the Associate State EMS Medical Director for Pediatrics
 (b) Must demonstrate proficiency to Attending Pediatric/Critical Care/Anesthesiologist’s satisfaction

b) Ongoing Demonstration of Proficiency
 (1) A verification of all pediatric and adult RSI skills and review of pediatric and adult RSI principles of safety will be performed on a quarterly basis.
 (2) Documentation of the quarterly verification process shall be submitted to the State EMS Medical Director on an annual basis.

c) Review of Each Call
 (1) Mechanism for follow-up of each call will be in accordance with the Quality Review Procedure for Pilot Programs (formerly “Class B” Additional Procedure Algorithm) of the Maryland Medical Protocols, with the following additions:
 (a) Immediate notification to jurisdictional RSI supervisor for all RSI attempts
 (b) Medical Director evaluation of all RSI attempts within 12 hours
 (c) Maintenance of detailed RSI database
 (d) All individual RSI attempts shall be documented after the jurisdictional review process on the approved RSI QA form and submitted to the State EMS Medical Director on a quarterly basis.
S. RAPID SEQUENCE INTUBATION – PHARMACOLOGY (NEW ’20)

1. ETOMIDATE (AMIDATE)

 a) Pharmacology
 Hypnotic

 b) Pharmacokinetics
 A short-acting nonbarbiturate hypnotic agent without analgesic properties

 c) Indications
 Pre-sedation of responsive patients prior to administration of neuromuscular blocking agents

 d) Contraindications
 Known hypersensitivity to etomidate

 e) Adverse Effects
 (1) Respiratory depression or apnea
 (2) Hypotension (infrequent)
 (3) Involuntary myoclonus
 (4) Adrenal suppression (possible with repeated dosing)

 f) Precautions
 (1) The effects of etomidate can be accentuated by CNS depressants such as opioids and alcohol.
 (2) Myoclonic movements are common and should not be confused for fasciculations due to a depolarizing neuromuscular blocking agent or seizure activity.

 g) Dosage
 (1) Adult:
 Administer 0.3 mg/kg IVP over 30–60 seconds.
 If the patient is hypotensive or the clinician suspects hypovolemia, the initial dose will be 0.15 mg/kg IVP over 30–60 seconds.
 Ventilatory Difficulty Secondary to Bucking or Combative in Injured Patients:
 Administer 0.3 mg/kg IVP over 30–60 seconds. If the patient is hypotensive or the clinician suspects hypovolemia, the initial dose will be 0.15 mg/kg IVP over 30–60 seconds.
 May repeat 0.15 mg/kg IVP every 15 minutes to a total of three doses.
 Pediatric:
 Administer 0.3 mg/kg IVP over 30–60 seconds.
 If the clinician suspects hypovolemia, the initial dose will be 0.15 mg/kg IVP over 30–60 seconds. May repeat 0.15 mg/kg IVP after succinylcholine effects resolve and patient is bucking or combative. May repeat 0.15 mg/kg IVP every 15 minutes to a total of three doses.
 Additional doses require medical consultation.
2. KETAMINE (KETANEST®, KETASET®, KETALAR®)

a) Pharmacology
 Hypnotic Analgesic

b) Pharmacokinetics
 A rapid-acting hypnotic analgesic agent characterized by normal pharyngeal-laryngeal reflexes, normal or enhanced skeletal muscle tone, and possible cardiovascular and respiratory stimulation.

c) Indications
 (1) Pre-sedation of responsive patients prior to administration of neuromuscular blocking agents
 (2) Sedation of intubated patients with ventilatory difficulty secondary to bucking or combativeness

d) Contraindications
 Known hypersensitivity to ketamine

e) Adverse Effects
 (1) Although respiration is frequently stimulated, respiratory depression may occur with rapid IV administration. Laryngospasm has been known to occur.
 (2) Although hypotension may occur, blood pressure and heart rate are frequently stimulated.
 (3) Involuntary myoclonus that may mimic seizure activity
 (4) Possible enhanced secretions
 (5) Possible unpleasant dreams and delirium upon emergence from sedation

f) Precautions
 (1) The likelihood of respiratory depression and undesired pressor effects is increased by too rapid IV administration.
 (2) Myoclonic movements are possible and should not be confused for fasciculations due to a depolarizing neuromuscular blocking agent, seizure activity, or emergence from sedation.

g) Dosage
 (1) Adult:
 Administer 2 mg/kg IVP over 60 seconds.
 May repeat 2 mg/kg IVP after succinylcholine effects resolve if patient is bucking or combative.
 May repeat 1 mg/kg for IVP every 10–15 minutes to a total of 3 doses, as necessary.
 Additional doses require medical consultation.

 (2) Pediatric:
 Administer 2 mg/kg IVP over 60 seconds.
 May repeat 2 mg/kg IVP after succinylcholine effects resolve if patient is bucking or combative.
 May repeat 1 mg/kg for IVP every 10–15 minutes to a total of three doses as necessary.
 Additional doses require medical consultation.
3. MIDAZOLAM (VERSED®)

a) Pharmacology
 (1) Sedative
 (2) Hypnotic

b) Pharmacokinetics
 A short-acting benzodiazepine with strong hypnotic and amnestic properties

c) Indications
 (1) Pre-sedation of responsive patients prior to administration of
 neuro-muscular blocking agents
 (2) Sedation of intubated patients with ventilatory difficulty secondary to bucking
 or combativeness

d) Contraindications
 (1) Hypotension
 (2) Acute narrow-angle glaucoma
 (3) Known hypersensitivity to midazolam

e) Adverse Effects
 (1) Respiratory depression or apnea
 (2) Hypotension
 (3) Amnesia

f) Precautions
 The effects of midazolam can be accentuated by CNS depressants such as opioids and alcohol

g) Dosage
 (1) Adult:
 Administer 0.1 mg/kg, SLOW IVP over 1–2 minutes, while maintaining systolic BP greater
 than 90 mmHg (110 mmHg if injuries include a suspected head injury). Maximum single
 dose is 5 mg.
 (2) Pediatric:
 Administer 0.05 mg/kg SLOW IVP over 1–2 minutes, while maintaining systolic BP greater
 than 60 in neonates, 70 in infants,
 \[70 + (2 \times \text{years}) = \text{systolic BP}\] for patients greater than 1 year of age. Maximum
 single dose is 5 mg.

 ADMINISTER UP TO 0.05 MG/KG IV WHEN TREATING ENDOTRACHEAL TUBE BUCKING,
 STOPPING ONCE BUCKING HAS RESOLVED AND VENTILATION IS RELAXED.
4. SUCCINYLCHOLINE (ANECTINE®)

a) Pharmacology
 Neuromuscular blocking agent (depolarizing)

b) Pharmacokinetics
 Paralyzes skeletal muscles, including respiratory muscles, and removes gag reflex

c) Indications
 To achieve paralysis to facilitate endotracheal intubation in patients as per Rapid Sequence Intubation Protocol

d) Contraindications
 (1) Conditions that may cause hyperkalemia:
 (a) Burns greater than 24 hours old
 (b) Spinal cord injury greater than 24 hours old
 (c) Known neuromuscular disease (Guillain-Barré syndrome, myasthenia gravis, amyotrophic lateral sclerosis, muscular dystrophy)
 (d) Chronic renal failure on hemodialysis or presence of hemodialysis access
 (2) History of malignant hyperthermia
 (3) Patients with known hypersensitivity to the drug

e) Adverse Effects
 (1) Bradycardia
 (2) Prolonged paralysis

f) Precautions
 Paralysis occurs in 1–2 minutes and generally lasts 4–6 minutes.

g) Dosage/Route
 (1) Adult:
 Administer 1.5 mg/kg rapid IVP to a maximum single dose of 200 mg.
 If relaxation is inadequate after 2–3 minutes, a repeat dose of 1 mg/kg rapid IVP may be given to a maximum single dose of 200 mg.
 (2) Pediatric:
 Administer 1.5 mg/kg rapid IVP to a maximum dose of 200 mg.
 If relaxation is inadequate after 2–3 minutes, a repeat dose of 1 mg/kg rapid IVP may be given to a maximum dose of 200 mg.
5. VECURONIUM (NORCURON®)

a) Pharmacology
 Neuromuscular blocking agent (non-depolarizing)

b) Pharmacokinetics
 (1) Paralyzes skeletal muscles, including respiratory muscles

c) Indications
 (1) For treatment of ventilatory difficulty secondary to bucking or
 combativeness in intubated patients
 (2) Patients with a history of malignant hyperthermia or contraindications to
 succinylcholine (NEW ’20)

d) Contraindications
 (1) Patients with known hypersensitivity to the drug

e) Adverse Effects
 (1) Bradycardia
 (2) Prolonged paralysis

f) Precautions
 (1) Sedation must be provided prior to administering vecuronium when
 administered to a patient who is either responsive to stimulus or who may
 become responsive to stimulus during neuromuscular blockade.
 (2) Paralysis occurs within 2–4 minutes and generally lasts 25–40 minutes.

g) Dosage/Route
 (1) RSI procedure (NEW ’20)
 Adult:
 (a) 0.1 mg/kg IVP/IO; if inadequate paralysis after 2-3 minutes,
 verify IV/IO patency. Repeat vecuronium 0.05 mg/kg IVP/IO.
 (2) Ventilatory bucking or combativeness
 Adult:
 (a) Administer vecuronium 0.05 mg/kg IVP. Maximum single dose is 10 mg.
 (b) Dose may be repeated once in 2-3 minutes, if necessary.
 (3) Pediatric:
 (a) Administer vecuronium 0.05 mg/kg IVP (may not be used for patients
 with needle cricothyroidotomy because of inability to monitor breath to
 breath ETCO₂). Maximum single dose is 10 mg.
 (b) Dose may be repeated once in 2-3 minutes, if necessary.
T. SPECIALTY CARE PARAMEDIC
(Paramedic only)

The scope of practice for the specialty care paramedic (SP) is defined by a floor and a ceiling of care. The entry level for this program is Maryland licensed paramedic. The floor of the SP is the existing The Maryland Medical Protocols for Emergency Medical Services, including the Optional Supplemental Protocols: CPAP, Glycoprotein II/III Antagonist, Heparin, Scene/Chronic Ventilator, and Mark I/DuoDote. (The Optional Supplemental protocols Wilderness and Transport of Acute Ventilator Interfacility Patient are not included as part of ALS transports.) The medications and procedures listed within The Maryland Medical Protocols for Emergency Medical Services may be administered by the SP based on the written interfacility transfer orders of the sending medical director of the commercial specialty care service (without manipulation of The Maryland Medical Protocols for Emergency Medical Services) or receiving physician without having to request online base station medical consultation.

The ceiling for the SP is defined by the medications and procedures that are defined as “RN” or are not listed within the tables below. Those medications or skills that are listed as “RN” require familiarization by the SP but are the responsibility of the transport nurse or physician constituting the patient care team.

If a medication or procedure is listed within the scope of practice for the SP, it applies to both adult and pediatric patients unless otherwise noted.

The practice environment for these medications and procedures will be strictly for the interfacility transfer of patients and not extended into the realm of the 9-1-1 response unless otherwise noted.

Classification of Drugs and Procedures

<table>
<thead>
<tr>
<th>SP</th>
<th>A specialty care paramedic (SP) may initiate, monitor, and maintain without a transport nurse if they have successfully completed an EMS Board-approved specialty care program. (The commercial ambulance must still meet the requirement of an additional ALS clinician and EMT driver to complete the specialty care transport.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN</td>
<td>A transport nurse or physician is onboard – SP needs familiarity with the medication or procedure but SP may not perform or administer.</td>
</tr>
<tr>
<td>Medication - Procedure</td>
<td>Specialty Care Paramedic (SP)</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>A. Medications</td>
<td></td>
</tr>
<tr>
<td>1. Sedatives</td>
<td></td>
</tr>
<tr>
<td>a. Etomidate (amidate)</td>
<td></td>
</tr>
<tr>
<td>b. Lorazepam (ativan)</td>
<td>SP</td>
</tr>
<tr>
<td>c. Midazolam (versed)</td>
<td>SP</td>
</tr>
<tr>
<td>d. Propofol (diprivan)</td>
<td></td>
</tr>
<tr>
<td>2. Analgesics</td>
<td></td>
</tr>
<tr>
<td>a. Fentanyl (sublimaze)</td>
<td>SP</td>
</tr>
<tr>
<td>b. Hydromorphone (dilaudid)</td>
<td></td>
</tr>
<tr>
<td>c. Meperidine (demerol)</td>
<td></td>
</tr>
<tr>
<td>d. Non-narcotic analgesics (e.g., Keterolac)</td>
<td>SP</td>
</tr>
<tr>
<td>3. Paralytics</td>
<td></td>
</tr>
<tr>
<td>a. All types</td>
<td></td>
</tr>
<tr>
<td>4. Antihypertensives</td>
<td></td>
</tr>
<tr>
<td>a. All types</td>
<td></td>
</tr>
<tr>
<td>5. Volume Expanders</td>
<td></td>
</tr>
<tr>
<td>a. Albumin</td>
<td>SP</td>
</tr>
<tr>
<td>b. Blood products</td>
<td></td>
</tr>
<tr>
<td>c. Dextran</td>
<td>SP</td>
</tr>
<tr>
<td>d. Hespan</td>
<td>SP</td>
</tr>
<tr>
<td>e. Plasmanate</td>
<td>SP</td>
</tr>
<tr>
<td>6. Vasopressors</td>
<td></td>
</tr>
<tr>
<td>a. Dobutamine (Dobutrex®)</td>
<td></td>
</tr>
<tr>
<td>b. Epinephrine – drip</td>
<td></td>
</tr>
<tr>
<td>c. Norepinephrine (Levaphed®)</td>
<td></td>
</tr>
<tr>
<td>d. Phenylephrine</td>
<td></td>
</tr>
<tr>
<td>7. Bronchodilators</td>
<td></td>
</tr>
<tr>
<td>a. Metaproterenol (Alupent®)</td>
<td></td>
</tr>
<tr>
<td>b. Theophylline – IV</td>
<td></td>
</tr>
<tr>
<td>c. Terbutaline (Brethine®) - Inhaled</td>
<td></td>
</tr>
<tr>
<td>d. L-Albuterol (inhaled)</td>
<td></td>
</tr>
<tr>
<td>8. Anti-Anginals</td>
<td></td>
</tr>
<tr>
<td>a. Atenolol (Tenormin®)</td>
<td></td>
</tr>
<tr>
<td>b. Metoprolol (Lopressor®)</td>
<td></td>
</tr>
<tr>
<td>c. Nitroglycerin (Tridil®) – IV</td>
<td></td>
</tr>
<tr>
<td>d. Propranolol (Inderal®)</td>
<td></td>
</tr>
<tr>
<td>A. Medications (Continued)</td>
<td>Specialty Care Paramedic (SP)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>9. Fibrinolytics/Thrombolytics</td>
<td></td>
</tr>
<tr>
<td>a. All types</td>
<td></td>
</tr>
<tr>
<td>10. Anti-Coagulants/Anti-Platelets</td>
<td></td>
</tr>
<tr>
<td>a. All Types</td>
<td>SP (adults only)</td>
</tr>
<tr>
<td>11. Anti-Emetic</td>
<td></td>
</tr>
<tr>
<td>a. All types anti-emetic</td>
<td>SP</td>
</tr>
<tr>
<td>12. Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>a. Flumazenil AD (Romazicon®)</td>
<td></td>
</tr>
<tr>
<td>b. Insulin – IV</td>
<td></td>
</tr>
<tr>
<td>c. Insulin in TPN</td>
<td>SP</td>
</tr>
<tr>
<td>d. Mannitol (Osmirol®)</td>
<td></td>
</tr>
<tr>
<td>e. Magnesium Sulfate (added to mixed drip – e.g., with vitamins)</td>
<td>SP</td>
</tr>
<tr>
<td>f. Potassium Chloride (only maintenance infusions; not bolusing)</td>
<td>SP</td>
</tr>
<tr>
<td>g. Sodium Bicarbonate Drip</td>
<td>SP</td>
</tr>
<tr>
<td>h. Steroids – IV (not initiated)</td>
<td>SP</td>
</tr>
<tr>
<td>i. Tocolytics (including Magnesium Sulfate)</td>
<td></td>
</tr>
<tr>
<td>j. Uterine stimulants (e.g., oxytocin)</td>
<td></td>
</tr>
<tr>
<td>13. Anti-Arrhythmic</td>
<td></td>
</tr>
<tr>
<td>a. Bretylium (Bretylol®)</td>
<td></td>
</tr>
<tr>
<td>b. Digoxin (Lanoxin®)</td>
<td></td>
</tr>
<tr>
<td>c. Diltiazem Drip</td>
<td>SP</td>
</tr>
<tr>
<td>d. Esmolol (Brevibloc®)</td>
<td></td>
</tr>
<tr>
<td>e. Metoprolol (Lopressor®)</td>
<td></td>
</tr>
<tr>
<td>f. Procaainamide (Pronestyl®)</td>
<td></td>
</tr>
<tr>
<td>g. Quinidine Sulfate & Gluconate</td>
<td></td>
</tr>
<tr>
<td>14. Anti-Convulsants (also see sedatives)</td>
<td></td>
</tr>
<tr>
<td>a. Barbiturates</td>
<td></td>
</tr>
<tr>
<td>b. Phenytoin (Dilantin®)/Fosphenytoin</td>
<td>SP</td>
</tr>
<tr>
<td>c. Other non-benzodiazepine anti-convulsants</td>
<td></td>
</tr>
<tr>
<td>15. Diuretics</td>
<td>SP</td>
</tr>
</tbody>
</table>
B. Invasive Procedures

<table>
<thead>
<tr>
<th></th>
<th>Specialty Care Paramedic (SP)</th>
<th>Team with Nurse (RN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chest Escharotomies</td>
<td>RN</td>
</tr>
<tr>
<td>2.</td>
<td>Chest Tubes Insertion</td>
<td>RN</td>
</tr>
<tr>
<td>3.</td>
<td>Chest Tube or Surgical Drain with or without vacuum system</td>
<td>SP</td>
</tr>
<tr>
<td>4.</td>
<td>Laryngeal Mask Airway</td>
<td>SP (adult only)</td>
</tr>
<tr>
<td>5.</td>
<td>Needle Cricothyroidotomy</td>
<td>SP</td>
</tr>
<tr>
<td>6.</td>
<td>Rapid Sequence Intubation</td>
<td>RN</td>
</tr>
<tr>
<td>7.</td>
<td>Surgical Cricothyroidotomy</td>
<td>SP</td>
</tr>
<tr>
<td>8.</td>
<td>Urinary catheter insertion</td>
<td>SP</td>
</tr>
</tbody>
</table>

C. Non-Invasive Procedures

<table>
<thead>
<tr>
<th></th>
<th>Specialty Care Paramedic (SP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IV Pumps</td>
</tr>
<tr>
<td>2.</td>
<td>Ostomy care</td>
</tr>
</tbody>
</table>

D. System Monitoring

<table>
<thead>
<tr>
<th></th>
<th>Team with Nurse (RN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Arterial Line/Cardiac Sheath</td>
</tr>
<tr>
<td>2.</td>
<td>CVP line (monitor but not performing measures)</td>
</tr>
<tr>
<td>3.</td>
<td>Intracranial Pressure Monitor/Line</td>
</tr>
<tr>
<td>4.</td>
<td>Swan-Ganz</td>
</tr>
</tbody>
</table>

E. Specialized Equipment

<table>
<thead>
<tr>
<th></th>
<th>Team with Nurse (RN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Acute Ventilated Interfacility Patient – Transport Service’s Ventilator (except as in E6)</td>
</tr>
<tr>
<td>2.</td>
<td>Internal Pacer with external control</td>
</tr>
<tr>
<td>3.</td>
<td>Intra-Aortic Balloon Pump</td>
</tr>
<tr>
<td>4.</td>
<td>Peritoneal Dialysis Systems</td>
</tr>
<tr>
<td>5.</td>
<td>Specialty Ventilator (e.g., pediatric or when hospital ventilator must accompany patient)</td>
</tr>
<tr>
<td>6.</td>
<td>Transport Isolette/Incubator</td>
</tr>
<tr>
<td>7.</td>
<td>Ventricular Assist Devices</td>
</tr>
</tbody>
</table>
U. SURGICAL CRICOTHYROIDOTOMY – ADULT

1. Inclusion Criteria
 Patients must have reached their 15th birthday and may present with any of the following conditions:
 a) Inability to oxygenate despite having tried BVM with oropharyngeal/nasopharyngeal airway, ET placement, and supraglottic airway (if not contraindicated)
 b) Inability to place ET in the setting of life-threatening upper airway hemorrhage
 c) Completely obstructing upper airway foreign body that cannot be removed via BLS maneuvers or Magill forceps with direct visualization

2. Equipment:
 CLINICIANS MAY USE PRE-ASSEMBLED EQUIPMENT OR AN FDA-APPROVED KIT, AS PRESCRIBED BY THE PROGRAM MEDICAL DIRECTOR.

3. Procedure:
 a) Clinicians must use a designated technique and procedure for establishing the airway through the cricothyroid membrane that has been approved by the program medical director as part of this pilot.
 b) Upon completion of the skill (or at an appropriate time during the sequence of patient care) the clinician will obtain medical direction and also notify the receiving physician/emergency department with the following information:
 (1) Patient condition
 (2) Reason for surgical cricothyroidotomy
 (3) Complications arising from procedure (if any)
 (4) Patient response to treatment
V. TACTICAL EMS

1. INTRODUCTION
 a) Scope and Applicability
 (1) These protocols are intended for use during high-risk, large-scale, and extended law enforcement or homeland security operations.
 (2) The Tactical Emergency Medical Services (TEMS) clinician is not directly responsible for any person(s) outside the direct field of operations, whose care may safely be provided by the local EMS Operational Program.
 (3) These protocols supplement the current version of *Maryland Medical Protocols for Emergency Medical Services* and, at the Tactical Physician’s discretion, may incorporate other EMS protocol components such as: Wilderness, Interfacility, Pilot/Optional, and WMD sections.
 (4) The Tactical Emergency Medical Services Protocols shall be used only by Tactical EMS clinicians sponsored by a law enforcement agency and operating under law enforcement command.
 (5) To be approved, there must be a written, integrated relationship between the EMS Operational Program and the TEMS program, with both the EMS Operational Program Medical Director and the TEMS Medical Director having signed off on the agreement.
 (6) Tactical EMS Clinicians at the EMT or ALS levels may administer the medications and perform the procedures listed in these protocols only after receiving specific training on their use and only under the medical direction of a Tactical Physician.
 (7) The primary function of the Tactical EMS Clinician is to support law enforcement or homeland security operations by facilitating the health and safety of critical public safety personnel inside the perimeter of high-risk, large-scale, and extended operations.
 (8) Once the patient is removed from the law enforcement perimeter of operations, the TEMS Protocol will end, *The Maryland Medical Protocols for Emergency Medical Services* will be implemented, and the transition of care will be made to the local EMS agency.
 (9) An exception may be made when the Tactical EMS Clinician’s specialized training is needed to manage a specific illness/injury.
 (a) If the Tactical EMS Clinician’s specialized training is needed to manage the patient’s illness/injury, then the highest-trained Tactical EMS Clinician shall ride to the hospital with the patient to maintain medications that are not allowed by *The Maryland Medical Protocols for Emergency Medical Services*.
 (b) If, during transport, Tactical EMS personnel encounter a significant conflict between TEMS Protocols and those of the transporting EMS agency, they should attempt to contact their own Tactical Physician and request a dual consult with the local Base Station Physician.
 (c) If they cannot reach a Tactical Physician, they should contact the local EMS Base Station for on-line medical consultation.
b) Definition of Tactical Environment
(1) Any law enforcement or homeland security operation where deployed personnel are in a large-scale operation or where the risk of injury is sufficiently high as to warrant the presence of on-scene emergency medical services clinicians.
(2) Types of operations may include: high-risk warrant service, hostage-barricade situations, emergency ordinance disposal, executive protection details, civil demonstration or protest, dynamic training operations, aquatic operations, high-angle, search and rescue missions, and acts of terrorism.
(3) Any prolonged law enforcement deployment, where performance decrement or environmental issues may arise and the safety of the public and deployed law enforcement personnel would benefit from the presence of a Tactical EMS Clinician to monitor these circumstances.

c) Demonstration of Need
(1) Jurisdictions that seek approval for a Tactical EMS Program shall submit a demonstration-of-need letter outlining the necessity for the program.
(2) The letter shall be submitted to the State EMS Medical Director for approval and include the following:
 (a) Name of organization and scope of the proposed Tactical EMS Team
 (b) Name and qualifications of the Tactical Medical Director and other Tactical Physicians
 (c) Name and qualifications of the Tactical EMS Coordinator and other Tactical EMS Clinicians

d) Sponsoring Law Enforcement Agency Requirements
(1) Sponsoring Law Enforcement Agencies shall be responsible for
 (a) Completing background investigations appropriate for medical clinicians working in and around law enforcement operations
 (b) Providing appropriate personal protective equipment, to accommodate conditions that the team may reasonably encounter, to the Tactical EMS Clinicians and Tactical Physician(s) and ensure adequate training in the equipment’s use and capabilities
 (c) Providing written documentation to MIEMSS that addresses the medical liability and personal injury considerations of the Tactical EMS Clinicians/Physician(s)

e) Tactical EMS Clinician/Tactical Physician Minimum Training Requirements
(1) The Tactical EMS Clinician shall be a Maryland-certified EMT or Maryland-licensed ALS clinician and have successfully completed a nationally-recognized Counter-Narcotic Tactical Operation Medical Support/Integrated Force Health Clinician Program (CONTOMS/IFHP) or equivalent Tactical Clinician course that includes instruction and training in
 (a) Team wellness and health management, including preventive medicine
 (b) Providing care under fire/basic weapons safety
 (c) Officer rescue
 (d) Planning medical operations and medical intelligence
 (e) Response to the active shooter
(f) Orientation to specialized medical gear personal protective equipment used in tactical medical operations
(g) Remote medical assessment ("medicine across the barricade")
(h) Response and management of WMD events, including field-expedient decontamination ("hasty decon") procedures
(i) Operational security, light and sound discipline, helicopter operations, pyrotechnic and other chemical agents, as utilized by law enforcement teams
(j) Less-than-lethal weaponry, the injuries they may cause, and any specific interventions required

(2) The Tactical EMS Clinician shall have responsibilities for part or all of these protocols, as summarized as follows, based on either EMT or ALS (CRT-I or paramedic) level certification.

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>EMT</th>
<th>ALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision of access to medications: ibuprofen, naproxen, fexofenadine, cetirizine, pseudoephedrine, oxymetazoline nasal spray, Mylanta®, cimetidine, loperamide, clove oil, acetaminophen, tramadol, caffeine, modafinil, ondansetron ODT, scopolamine patch, ophthalmologic proparacaine/tetracaine and fluorescein, prednisone PO, dexamethasone PO, albuterol MDI, aspirin, epinephrine 1 mg/mL IM, naloxone IN, glucose PO</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Administration of medications in Protocol, not listed above</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Cyanoacrylate tissue adhesive</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Field expedient wound closure (stapling)</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Conducted electrical weapon (CEW) dart removal</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

(3) The Tactical EMS Clinician shall document each patient contact utilizing a patient care report (PCR) (eMEDS®). The documentation must be consistent with current MIEMSS regulations for interventions, as summarized in the above table.

(4) The Tactical Physician shall possess an unrestricted Maryland License (preferred Emergency Medicine, General/Orthopedic/Trauma Surgery, or Critical Care), have experience in on-line medical direction, and have completed a nationally-recognized (CONTOMS/IFHP or equivalent) tactical medical director's course that includes instruction and training in the following topics:
(a) History of/need for tactical EMS provision
(b) Administrative/command concerns and responsibilities
(c) Care under fire
(d) Special equipment/hazards in the tactical environment
(e) Forensic examination
(f) Medicine "across the barricade"
(g) Medical threat assessment
f) Quality Assurance Properties
(1) Individual Tactical EMS Clinicians must be approved for TEMS Program Participation by the TEMS Medical Director.
(2) Classroom lecture
(3) Mannequin instruction
(4) Must demonstrate proficiency through skills testing and written test
(5) Ongoing demonstration of proficiency
(6) A verification of all TEMS skills and review of TEMS principles of safety will be performed on an annual basis by the Medical Director, or the clinician may document utilization of skills in the field.
(7) Review of each call
 (a) Upon completion of the tactical incident, notification of any implementation of the TEMS Protocol will be made to your jurisdictional TEMS supervisor, who will ensure notification to TEMS Medical Director.
 (b) TEMS Medical Director will review and evaluate all TEMS interventions within 48 hours of resolution of the tactical incident and provide feedback.
(8) The TEMS program will maintain a detailed TEMS database and will provide an annual report to the State EMS Medical Director.

2. GENERAL PROTOCOLS
a) Medical Direction
 (1) Tactical EMS Clinicians may provide medical care using Tactical Medical Protocols only under the medical direction of a Tactical Physician.
 (2) Immediately available telephone or radio contact during an operation shall be considered a reasonable substitute for in-person supervision of Tactical EMS Clinicians.
 (3) In the absence of medical direction by a Tactical Physician, jurisdictional trained and designated Tactical EMS Clinicians should defer to their usual EMS protocols.

b) Operational Command
 (1) Operational command within a law enforcement perimeter of operation lies with the law enforcement commander. At times, the safety and success of the law enforcement objectives may override the need to care for casualties. The law enforcement commander is responsible for the care and movement of casualties within a law enforcement operation.

3. SPECIAL CONSIDERATION FOR TACTICAL EMS
a) The execution of some law enforcement operations may require that minor illness or injury in essential public safety personnel be treated and, to the extent that it is medically safe to do so, that those treated personnel return to duty. Fitness for duty of public safety personnel with minor injuries or illnesses shall be determined by the law enforcement commander in consultation with a Tactical Physician.

b) Prescription and over-the-counter (OTC) medications may be used for the treatment (or “symptomatic relief”) of constitutional symptoms as required.
to promote the health, safety, and functionality of persons necessary to the operation. The Tactical EMS Clinician(s) under the Tactical Physician will know the indications/contraindications for the medications available to them (as will be delineated under “Additional Medications for Tactical EMS,” to follow). At the EMT level, medications will be made available to those persons under the Tactical Clinician’s care to self-select and self-medicate at the individual requesting person’s own discretion regarding appropriateness of use.

c) The Tactical EMS Clinician may provide care to all persons associated with the operation, and shall be responsible for initial access, assessment, and stabilization (within the scope of The Maryland Medical Protocols for Emergency Medical Services) of those victims, bystanders, and suspects within the “warm” or “hot” zones until they may be extracted to local EMS clinicians. The Tactical EMS clinician is not directly responsible for any person(s) outside the direct field of operations, whose care may safely be provided by the local EMS Operational Program.

4. SPECIFIC PROCEDURES
a) Cyanoacrylate tissue adhesive
 (1) Purpose: To limit blood loss, pain, and risk of secondary contamination/injury to a minor open wound
 (2) Indications
 (a) Clean wounds
 (b) Minor bleeding wounds difficult to control with other interventions
 (c) Wounds in personnel who must remain operational
 (3) Contraindications
 (a) Grossly contaminated wounds
 (b) Greater than two hours since infliction of wound
 (c) Macerated/crushed surrounding tissue
 (d) Wounds near the eyes
 (4) Potential adverse effects/complications
 (a) This is not intended to constitute definitive wound closure; however, if properly cleaned prior to procedure, may be reviewed by physician without further intervention.
 (b) Transient local pain at application site may be reported.
 (5) Precautions
 (a) Ask regarding previous reaction/exposure to agent.
 (b) Advise patient of requirement for further evaluation by physician.

b) “Field expedient” wound closure (stapling)
 (1) Purpose: To limit blood loss and risk of secondary contamination injury to an open wound.
 (2) Indications
 (a) Clean wounds
 (b) Delay in transportation to definitive care will be or is anticipated to be several hours
 (c) Bleeding wounds difficult to control with other interventions
 (d) Wounds in personnel who must remain operational
(3) Contraindications
 (a) Grossly contaminated wounds
 (b) Greater than six hours since infliction of wound
 (c) Macerated/crushed surrounding tissue
 (d) Situations with less than two hours anticipated time to transportation to definitive care
 (e) Facial wounds

(4) Potential adverse effects/complications
 (a) This is not intended to constitute definitive wound closure—this will minimize the risk for increased infection and increased foreign body retention.

(5) Precautions
 (a) Ask regarding local anesthetic allergies.
 (b) Advise patient of requirement for further evaluation by physician.

 c) Impaled conducted electrical weapon dart removal
 (1) ANY conducted electrical weapon dart impalement to the head, neck, hands, feet, or genitalia must be stabilized in place and evaluated by a physician.
 (2) In order to safely transport the patient, attempted extraction may be made one time by a Tactical EMS Clinician as long as the dart is not lodged in a location listed in (1) above and is not fully embedded up to the hub in tissue.
 (3) All patients receiving conducted electrical weapon intervention will need to be transported to the emergency department for assessment.

5. SUPPLEMENTAL FORMULARY FOR TACTICAL EMS
 a) Tactical EMS clinicians may administer the following medications to support and maintain Tactical personnel in the operation environment. Bolded medications are required as part of the standardized TEMS load-out at the EMT or ALS level; the others are optional.
 (1) Antihistamines/Decongestants
 (a) Pseudoephedrine (Sudafed®)
 (b) Cetirizine (Zyrtec®)
 (c) Diphenhydramine (Benadryl®)
 (d) Fexofenadine (Allegra®)
 (e) Oxymetazoline nasal spray (Afrin®)
 (2) Gastrointestinal
 (a) Antacid (Mylanta® or other equivalent antacid)
 (b) Cimetidine (Tagamet®—or other equivalent H2 blocker)
 (c) Loperamide (Imodium®)
 (d) 5-HT3 Antagonist (Zofran® ODT/Ondansetron, 5-HT3 antagonist)
 (e) Metoclopramide (Reglan®) (injectable)
 (f) Dimenhydrinate (Dramamine®)
 (g) Meclizine (Antivert®) (for motion sickness)
 (h) Scopolamine transdermal
(3) Ophthalmologicals
 (a) Proparacaine or tetracaine (Alcaine®) ophthalmic
 (b) Fluorescein stain (and blue light)
 (c) Eye irrigation solution
 (d) Erythromycin ophthalmic ointment
 (e) pH paper

(4) Antimicrobials/antiviral (agent-specific training)
 (a) Ciprofloxacin (following exposure or prophylaxis)
 (b) Triple Antibiotic Ointment (Bacitracin®/Polymyxin®/Neomycin®)
 (c) Amoxicillin/clavulanic acid (Augmentin®)
 (d) Cefazolin (Ancef®) (PO or IV) (for trauma applications when transport delayed)
 (e) Clindamycin (Cleocin®)
 (f) Trimethoprim/sulfamethoxazole (Bactrim®)
 (g) Azithromycin (Zithromax®)
 (h) Doxycycline
 (i) Mupirocin topical ointment (Bactroban®)
 (j) Emtricitabine and tenofovir (Truvada®) (high-risk post-exposure management)

(5) Steroids
 (a) Prednisone (PO)
 (b) Dexamethasone (Decadron®) (IV/IM and/or PO)

(6) Analgesics/anesthetics
 (a) Acetaminophen (PO)
 (b) Ibuprofen (Motrin®/Advil®)
 (c) Naproxen (Aleve®/Naprosyn®) (PO)
 (d) Tramadol (Ultram®) (PO)
 (e) Ketamine
 (f) Naloxone (Narcan®) (IN and/or IV)
 (g) Lidocaine (transdermal for muscular relief, or IM/SQ for stapling as temporary measure only, alternate dosing regimen)
 (h) Fentanyl transmucosal (PO)
 (i) Clove oil (for topical dental analgesia)
 (j) Ketorolac (Toradol®) (injectable)

(7) Sleep/wake
 (a) Caffeine (No-Doz®)
 (b) Zaleplon (Sonata®) (sleeper)
 (c) Modafinil (Provigil®)

(8) Wound management
 (a) Cyanoacrylate tissue adhesive (Dermabond®)
 (b) Topical hemostatic agent
 (c) Steri-strips
 (d) Staples

(9) ACLS/resuscitation
 (a) Albuterol MDI
(10) Anti-hypoglycemics

(a) Oral glucose

(11) Additional Medications for Tactical EMS: The following is a list of medications from the Maryland Medical Protocols that is strongly encouraged to be readily accessible to complement the Tactical Medic’s Formulary.

Aspirin (EMT, ALS) Non-Operational
Atropine multi-dose (ALS) Non-Operational
Dexamethasone (ALS) Operational
Dextrose (ALS) Non-Operational
Epinephrine 1:1,000, (EMT, ALS) Non-Operational
Haldol (ALS) Non-Operational
Morphine or fentanyl for injection (ALS) Non-Operational
Midazolam (ALS) Non-Operational
Nitroglycerin (ALS) Non-Operational

OPERATIONAL: THE MEDICATION MAY BE GIVEN TO A LAW ENFORCEMENT MEMBER WHO MAY CONTINUE TO PERFORM THEIR ASSIGNED DUTIES.

NON-OPERATIONAL: ONCE THE MEDICATION HAS BEEN ADMINISTERED, THE LAW ENFORCEMENT MEMBER IS REMOVED FROM THEIR ASSIGNED DUTIES SINCE THE MEDICATION OR THE ASSOCIATED MEDICAL/TRAUMATIC COMPLAINT FOR WHICH THE MEDICATION IS INDICATED MAY IMPAIR THEIR ABILITY TO PERFORM CRITICAL LAW ENFORCEMENT TASKS AND DUTIES.

b) Tactical EMS Medical Formulary

(1) Antihistamines/Decongestants

(a) Pseudoephedrine (Sudafed®)

(i) AVAILABILITY.................................30 mg or 60 mg tablets (OTC)
(ii) ACTION..Decongestant
(iii) INDICATIONS...............................Nasal congestion; rhinorrhea
(iv) CONTRAINDICATIONS...............Known hypersensitivity; hypertension
(v) PRECAUTIONS.............................
(vi) OPERATIONAL STATUS..............Operational
(vii) SIDE EFFECTS..............................Insomnia
(viii) INTERACTIONS...........................
(ix) DOSAGE.......................................30–60 mg, every 4–6 hours, as needed

(b) Cetirizine (Zyrtec®)

(i) AVAILABILITY...............................10 mg tablet
(ii) ACTION..Non-sedating antihistamine
(iii) INDICATIONS...............................Allergic symptoms
(iv) CONTRAINDICATIONS...............Known hypersensitivity
(v) PRECAUTIONS.............................Hypertension; liver/kidney dx
(vi) OPERATIONAL STATUS..............Operational
(vii) SIDE EFFECTS..............................Dry mouth, urinary retention
(viii) INTERACTIONS...........................
(ix) DOSAGE.......................................10 mg/once daily
(c) Diphenhydramine (Benadryl®)
(i) AVAILABILITY.................................25 mg or 50 mg tablets
(ii) ACTION ..Sedating antihistamine
(iii) INDICATIONSAllergic symptoms
(iv) CONTRAINDICATIONSKnown hypersensitivity
(v) PRECAUTIONSHypertension; liver/kidney dx
(vi) OPERATIONAL STATUSNON-OPERATIONAL
(vii) SIDE EFFECTSDry mouth, urinary retention, somnolence
(viii) INTERACTIONS
(ix) DOSAGE ...25–50 mg every 4–6 hours, as needed; per MD/DO

(d) Fexofenadine (Allegra®)
(i) AVAILABILITY60 mg tablet
(ii) ACTION ..Non-sedating antihistamine
(iii) INDICATIONSAllergic symptoms
(iv) CONTRAINDICATIONSKnown hypersensitivity
(v) PRECAUTIONSHypertension history; aLK CC ^?
(vi) OPERATIONAL STATUSOperational
(vii) SIDE EFFECTSDry mouth, urinary retention
(viii) INTERACTIONS
(ix) DOSAGE ...60mg/once or twice daily

(e) Oxymetazoline nasal spray (Afrin®)
(i) AVAILABILITYNasal spray 0.05%
(ii) ACTION ..Nasal vasoconstriction; decongestant
(iii) INDICATIONSRhinorrhea; sinus congestion and pain
(iv) CONTRAINDICATIONSKnown hypersensitivity
(v) PRECAUTIONSaLK CC ^?
(vi) OPERATIONAL STATUSOperational
(vii) SIDE EFFECTSNosebleed (minor) possible; often used in treatment of nosebleed
(viii) INTERACTIONS
(ix) DOSAGE ...Two sprays per nare, 2–3 times per day

(2) Gastrointestinal
(a) Antacid (Mylanta® or other equivalent antacid)
(i) AVAILABILITYLiquid (OTC)
(ii) ACTION ..Antacid
(iii) INDICATIONSGI upset, GERD, PUD, gastritis, esophagitis
(iv) CONTRAINDICATIONSKnown hypersensitivity
(v) PRECAUTIONS.................................Some medications require acidic pH and should not be taken at same time with this medication: aK C+ (? 1st trimester) ??

(vi) OPERATIONAL STATUS....................Operational
(vii) SIDE EFFECTS.............................Loose stools possible
(ix) DOSAGE.....................................15–45 mL every 4–8 hours

(b) Cimetidine (Tagamet®—or other equivalent H2 blocker)
(i) AVAILABILITY200/300/400 mg tablets; 300 mg IV/IM
(ii) ACTION......................................H2 blocker
(iii) INDICATIONS.........................PUD, GERD, esophagitis, gastritis
(iv) CONTRAINDICATIONS......................Known hypersensitivity; concomitant Proton Pump Inhibitor (PPI) use
(v) PRECAUTIONS............................aL CC ??
(vi) OPERATIONAL STATUS....................Operational
(vii) SIDE EFFECTS.............................
(ix) DOSAGE.....................................300 mg IV/IM/PO every 6–8 hours; 400 mg twice daily

(c) Loperamide (Imodium®)
(i) AVAILABILITY..............................2 mg tablet (OTC) and 1mg/5mL suspension
(ii) ACTION......................................Anti-diarrheal
(iii) INDICATIONS..............................Diarrhea
(iv) CONTRAINDICATIONS......................Known hypersensitivity; hypertension; bloody diarrhea
(v) PRECAUTIONS.............................aL CB ??
(vi) OPERATIONAL STATUS....................Operational
(vii) SIDE EFFECTS..............................ENT dryness
(ix) DOSAGE.....................................4 mg first dose; 2 mg each subsequent episode until stool formed; maximum 16 mg per day

(d) 5-HT3 Antagonist (Zofran® ODT/Ondansetron, 5-HT3 antagonist)
(i) AVAILABILITY..............................IM/IV injectable; tablets
(ii) ACTION......................................Anti-emetic; anti-motion sickness
(iii) INDICATIONS..............................Nausea/vomiting
(iv) CONTRAINDICATIONS......................Known hypersensitivity
(v) PRECAUTIONS.............................aK CB ??
(vi) OPERATIONAL STATUS....................Operational
(vii) SIDE EFFECTS..............................
(viii) INTERACTIONS..............................
(ix) DOSAGE.....................................Per MD/DO
(e) Metoclopramide (Reglan®) (injectable)
 (i) AVAILABILITY..........................IM/IV injectable; 10 mg
 (ii) ACTION..............................Anti-emetic; promotes GI motility
 (iii) INDICATIONS..........................Nausea/vomiting
 (iv) CONTRAINDICATIONS..............Known hypersensitivity
 (v) PRECAUTIONS.........................Dystonic reaction risk (treat with diphenhydramine); may see sedation; aK CB a?
 (vi) OPERATIONAL STATUS..............NON-OPERATIONAL
 (vii) SIDE EFFECTS.......................Sedation; dystonia
 (viii) INTERACTIONS.......................None
 (ix) DOSAGE..................................10–20 mg IM/IV/PO every 4 hours, as needed; per MD/DO

(f) Dimenhydrinate (Dramamine®)
 (i) AVAILABILITY..........................IM/IV injectable; 50 mg tablet
 (ii) ACTION..............................Anti-emetic; anti-motion sickness
 (iii) INDICATIONS..........................Nausea/vomiting
 (iv) CONTRAINDICATIONS..............Known hypersensitivity
 (v) PRECAUTIONS.........................May see sedation; aK CB a?
 (vi) OPERATIONAL STATUS..............NON-OPERATIONAL
 (vii) SIDE EFFECTS.......................Sedation
 (viii) INTERACTIONS.......................None
 (ix) DOSAGE..................................50–100 mg IM/IV/PO every 4 hours, as needed; per MD/DO

(g) Meclizine (Antivert®) (for motion sickness)
 (i) AVAILABILITY..........................25–50 mg tablet
 (ii) ACTION..............................Anti-emetic; anti-motion sickness
 (iii) INDICATIONS..........................Nausea/vomiting
 (iv) CONTRAINDICATIONS..............Known hypersensitivity
 (v) PRECAUTIONS.........................May see sedation; aK CB a?
 (vi) OPERATIONAL STATUS..............NON-OPERATIONAL
 (vii) SIDE EFFECTS.......................Sedation
 (viii) INTERACTIONS.......................None
 (ix) DOSAGE..................................25–50 mg PO every 4 hours, as needed; per MD/DO

(h) Scopolamine transdermal
 (i) AVAILABILITY..........................1 mg patch
 (ii) ACTION..............................Anti-emetic; anti-motion sickness
 (iii) INDICATIONS..........................Nausea/vomiting/motion sickness prevention
 (iv) CONTRAINDICATIONS..............Known hypersensitivity, hx angle closure glaucoma; hypersensitivity to belladonna alkaloids, seizures, urinary retention
 (v) PRECAUTIONS.........................May cause sedation, disorientation underwater
(vi) OPERATIONAL STATUS...Operational (if previously tolerated scopolamine)
(vii) SIDE EFFECTS...Sedation
(viii) INTERACTIONS...Use with caution when taking other potentially sedative drugs or anticholinergics
(ix) DOSAGE...1 mg patch every 3 days, as needed; per MD/DO

(3) Ophthalmologicals

(a) Proparacaine or Tetracaine (Alcaine®) ophthetic
(i) AVAILABILITY...Ocular anesthetic solution
(ii) ACTION...Topical anesthetic
(iii) INDICATIONS...To facilitate eye exam; relieve eye pain; per MD/DO
(iv) CONTRAINDICATIONS...Known hypersensitivity
(v) PRECAUTIONS...Ensure eye protection from foreign objects after exam
(vi) OPERATIONAL STATUS...Operational
(vii) SIDE EFFECTS...
(viii) INTERACTIONS...Eye pain
(ix) DOSAGE...1–2 drops per eye; per MD/DO

(b) Fluorescein stain (and blue light)
(i) AVAILABILITY...Single application strips
(ii) ACTION...Dye to facilitate eye exam
(iii) INDICATIONS...Suspected eye injury (foreign body/corneal abrasion)
(iv) CONTRAINDICATIONS...Known hypersensitivity
(v) PRECAUTIONS...N/A
(vi) OPERATIONAL STATUS...Operational
(vii) SIDE EFFECTS...N/A
(viii) INTERACTIONS...N/A
(ix) DOSAGE...One drop per eye

(c) Eye irrigation solution
(i) AVAILABILITY...100 mL, 200 mL bottles (other sizes may also be available)
(ii) ACTION...To facilitate irrigation of contaminants from the eye
(iii) INDICATIONS...Following exposure of foreign body or chemical to eye
(iv) CONTRAINDICATIONS...Known hypersensitivity
(v) PRECAUTIONS...Not be used in penetrating eye trauma
(vi) OPERATIONAL STATUS...Operational
(vii) SIDE EFFECTS...
(viii) INTERACTIONS...
(ix) DOSAGE...Irrigate until an eye pH of 7.4 is achieved
(d) **Erythromycin ophthalmic ointment**
 (i) **AVAILABILITY**.................................0.5% ointment
 (ii) **ACTION**..................................Macrolide antibiotic
 (iii) **INDICATIONS**...............................Per MD/DO—infectious exposures
 (iv) **CONTRAINDICATIONS**....................Known hypersensitivity to penicillins
 (v) **PRECAUTIONS**..............................Topical use only
 (vi) **OPERATIONAL STATUS**.................Operational
 (vii) **SIDE EFFECTS**.............................GI upset; nausea/vomiting; diarrhea
 (viii) **INTERACTIONS**.........................
 (ix) **DOSAGE**..................................Per MD/DO

(e) **pH paper**
 (i) **AVAILABILITY**.............................Rolls or precut pieces of paper (other sizes may also be available)
 (ii) **ACTION**..................................To measure baseline and repeat pH during decontamination/irrigation
 (iii) **INDICATIONS**............................Following exposure of foreign body or chemical to eye or skin
 (iv) **CONTRAINDICATIONS**...................Known hypersensitivity
 (v) **PRECAUTIONS**............................Not be used in penetrating eye trauma
 (vi) **OPERATIONAL STATUS**.................Operational
 (vii) **SIDE EFFECTS**...........................
 (viii) **INTERACTIONS**.........................
 (ix) **DOSAGE**..................................One strip approximately 1–2 inches; per MD/DO

(4) **Antimicrobials/antiviral (agent-specific training)**
 (a) **Ciprofloxacin (following exposure or prophylaxis)**
 (i) **AVAILABILITY**............................250/500/750 mg tablets; 400 mg IVPB; 250 or 500/5 suspension
 (ii) **ACTION**..................................2nd generation quinolone antimicrobial agent
 (iii) **INDICATIONS**............................Per MD/DO—infectious exposures
 (iv) **CONTRAINDICATIONS**....................Known hypersensitivity
 (v) **PRECAUTIONS**.............................aLK CC (teratogenicity unlikely)?
 (vi) **OPERATIONAL STATUS**.................Operational
 (vii) **SIDE EFFECTS**..........................GI upset, nausea/vomiting, diarrhea, yeast infection
 (viii) **INTERACTIONS**.........................
 (ix) **DOSAGE**..................................Per MD/DO
(b) Triple antibiotic ointment or equivalent
(Bacitracin®/Polymyxin®/Neomycin®)
(i) AVAILABILITY..Topical ointment
(ii) ACTION ..Polypeptide antibiotic
(iii) INDICATIONSPer MD/DO—infectious exposures
(iv) CONTRAINDICATIONS......................Known hypersensitivity
(v) PRECAUTIONS.................................Topical use only
(vi) OPERATIONAL STATUS........................Operational
(vii) SIDE EFFECTSLocal irritation, GI upset
(viii) INTERACTIONS...................................
(ix) DOSAGE ..Apply to superficial scrapes, burns, wounds, prior to dry sterile dressing.

(c) Amoxicillin/clavulanate (Augmentin®)
(i) AVAILABILITY.......................................875 or 125 mg tablets
(ii) ACTION ..Beta-lactamase inhibitors
(iii) INDICATIONSPer MD/DO—infectious exposures
(iv) CONTRAINDICATIONS......................Known hypersensitivity to penicillins
(v) PRECAUTIONS......................................Liver/Kidney dx
(vi) OPERATIONAL STATUS........................Operational
(vii) SIDE EFFECTSGI upset; nausea/vomiting; diarrhea
(viii) INTERACTIONS...................................
(ix) DOSAGE...Per MD/DO

(d) Cefazolin (Ancef®) (PO or IV) (for trauma applications when transport delayed)
(i) AVAILABILITY0.5–2 grams IM/IV
(ii) ACTION ..1st generation Cephalosporin antimicrobial agent
(iii) INDICATIONSPer MD/DO—infectious exposures/trauma
(iv) CONTRAINDICATIONS......................Known hypersensitivity to PCN or Cephalosporins
(v) PRECAUTIONSaK CB a+
(vi) OPERATIONAL STATUSNON-OPERATIONAL
(vii) SIDE EFFECTSGI upset, nausea/vomiting, diarrhea, yeast infection
(viii) INTERACTIONS.................................
(ix) DOSAGE ...Per MD/DO

(e) Clindamycin (Cleocin®)
(i) AVAILABILITY150 or 300 mg tablets; reconstituted liquid 75mg/5mL
(ii) ACTION ..Antibiotic
(iii) INDICATIONSSuspected pharyngitis or respiratory Infection, cellulitis
(iv) CONTRAINDICATIONS......................Hypersensitivity to clindamycin
(v) PRECAUTIONS.................................
(vi) OPERATIONAL STATUS......................Operational
(f) Trimethoprim/Sulfadiazine (Bactrim®)
 (i) AVAILABILITY.................................DS tablet
 (ii) ACTION..Sulfonamide antibiotic
 (iii) INDICATIONS...............................Per MD/DO—infectious exposures
 (iv) CONTRAINDICATIONS....................Known hypersensitivity
 (v) PRECAUTIONS..............................Liver/kidney dx, anemia, thrombocytopenia
 (vi) OPERATIONAL STATUS.....................Operational
 (vii) SIDE EFFECTS..............................GI upset, nausea/vomiting, diarrhea
 (viii) INTERACTIONS...........................
 (ix) DOSAGE...Per MD/DO

(g) Azithromycin (Zithromax®)
 (i) AVAILABILITY....................................250 mg tablet
 (ii) ACTION..Macrolide antibiotic
 (iii) INDICATIONS...............................Per MD/DO—infectious exposures
 (iv) CONTRAINDICATIONS....................Known hypersensitivity to penicillins
 (v) PRECAUTIONS..............................Liver/kidney dx
 (vi) OPERATIONAL STATUS.....................Operational
 (vii) SIDE EFFECTS..............................GI upset, nausea/vomiting, diarrhea
 (viii) INTERACTIONS...........................
 (ix) DOSAGE...Per MD/DO

(h) Doxycycline
 (i) AVAILABILITY....................................100 mg tablet
 (ii) ACTION..Tetracycline antibiotic
 (iii) INDICATIONS...............................Per MD/DO—infectious exposures
 (iv) CONTRAINDICATIONS....................Known hypersensitivity to tetracyclines, pregnancy
 (v) PRECAUTIONS..............................Liver/kidney dx, photoreactivity rash
 (vi) OPERATIONAL STATUS.....................Operational
 (vii) SIDE EFFECTS..............................GI upset, nausea/vomiting, diarrhea
 (viii) INTERACTIONS...........................
 (ix) DOSAGE...Per MD/DO

(i) Mupirocin topical ointment (Bactroban®)
 (i) AVAILABILITY...............................2% topical ointment
 (ii) ACTION..Other antibiotic
 (iii) INDICATIONS...............................Per MD/DO—infectious exposures
 (iv) CONTRAINDICATIONS....................Known hypersensitivity
 (v) PRECAUTIONS..............................Avoid eyes, limit prolonged use
 (vi) OPERATIONAL STATUS.....................Operational
 (vii) SIDE EFFECTS..............................Local irritation, GI discomfort
 (viii) INTERACTIONS...........................
 (ix) DOSAGE...Per MD/DO
(j) Emtricitabine and tenofovir (Truvada) (high-risk post-exposure management)
 (i) AVAILABILITY...Tablet containing tenofovir DF 300 mg; emtricitabine 200 mg
 (ii) ACTION ..Antiretroviral
 (iii) INDICATIONSPer MD/DO—infectious exposures
 (iv) CONTRAINDICATIONSKnown hypersensitivity
 (v) PRECAUTIONSLiver/kidney dx
 (vi) OPERATIONAL STATUS..........................Operational
 (vii) SIDE EFFECTSGl upset, nausea/vomiting, diarrhea
 (viii) INTERACTIONS
 (ix) DOSAGE ...Per MD/DO

(5) Steroids
 (a) Prednisone (PO)
 (i) AVAILABILITYPO; 1/5/10/20/50 mg tablets
 (ii) ACTION ..Corticosteroid, anti-inflammatory
 (iii) INDICATIONSAllergic reaction, auto-immune condition; per MD/DO
 (iv) CONTRAINDICATIONSKnown hypersensitivity
 (v) PRECAUTIONSPUD/GERD/GI bleed history; aL CC a+
 (vi) OPERATIONAL STATUS..........................Operational
 (vii) SIDE EFFECTSGl upset/nausea
 (viii) INTERACTIONS
 (ix) DOSAGE ...40 mg to 60 mg once daily; per MD/DO

 (b) Dexamethasone (Decadron®) (IV/IM and/or PO)
 (i) AVAILABILITYPO or IV/IM; tablets
 (ii) ACTION ..Corticosteroid, anti-inflammatory
 (iii) INDICATIONSAllergic reaction, auto-immune condition; per MD/DO
 (iv) CONTRAINDICATIONSKnown hypersensitivity
 (v) PRECAUTIONSPUD/GERD/GI bleed history, aL CC a-
 (vi) OPERATIONAL STATUS..........................Operational
 (vii) SIDE EFFECTSGl upset/nausea
 (viii) INTERACTIONS
 (ix) DOSAGE ...10 mg once daily; per MD/DO

(6) Analgesics/Anesthetics
 (a) Acetaminophen (PO)
 (i) AVAILABILITYTablet: 325 and 500 mg
 (ii) ACTION ..Pain medication
 (iii) INDICATIONSMild to moderate pain
 (iv) CONTRAINDICATIONSKnown hypersensitivity, liver disease, PUD/GERD/GI bleed history
 (v) PRECAUTIONSaL CB a+
 (vi) OPERATIONAL STATUSOperational
 (vii) SIDE EFFECTSGl upset
 (viii) INTERACTIONS
 (ix) DOSAGE ...650–1,000 mg / 6 hours
(b) Ibuprofen (Motrin®/Advil®)
(i) AVAILABILITY200 mg tablet (OTC) and
100 mg/5mL suspension; 600 mg
and 800 mg tablets
(ii) ACTION ...Non-steroidal anti-inflammatory pain
medication
(iii) INDICATIONSMild to moderate pain
(iv) CONTRAINDICATIONS....................Known hypersensitivity, renal
insufficiency (not failure), PUD/
GERD/GI bleed history
(v) PRECAUTIONSDo not use with other NSAIDs;
caution with concomitant steroid
use; aL CB (D in 3rd trimester) a+
(vi) OPERATIONAL STATUS.......................Operational
(vii) SIDE EFFECTSGI upset/nausea, GI bleeding risk
(viii) INTERACTIONS...................................
(ix) DOSAGE ..400–600 mg / 4–6 hours or
600–800 mg / 6–8 hours

(c) Naproxen (Aleve®/Naprosyn®) (PO)
(i) AVAILABILITYTablet: 220/375/500 mg PO tablets
(ii) ACTION ...Non-steroidal anti-inflammatory
pain medication
(iii) INDICATIONSMild to moderate pain
(iv) CONTRAINDICATIONS....................Known hypersensitivity, renal
insufficiency (not failure), PUD/GERD/GI bleed history
(v) PRECAUTIONSDo not use with other NSAIDs;
caution with concomitant steroid
use; aL CB (D in 3rd trimester)
(vi) OPERATIONAL STATUS.......................Operational
(vii) SIDE EFFECTSGI upset/nausea, GI bleeding risk
(viii) INTERACTIONS...................................
(ix) DOSAGE ..220–500 mg every 12 hours

(d) Tramadol (Ultram®) (PO)
(i) AVAILABILITY50 and 100 mg PO tablets
(ii) ACTION ..Pain medication
(iii) INDICATIONSModerate to moderately severe pain
(iv) CONTRAINDICATIONS....................Known hypersensitivity, seizure
Disorder, SSRI/TCA/MAOI use, renal
or hepatic insufficiency (adjust dose)
(v) PRECAUTIONSCaution with concomitant opioid
use; aLiver CC ^?
(vi) OPERATIONAL STATUS.......................Operational (if no side effects reported)
(vii) SIDE EFFECTSPotential dizziness/nausea
(viii) INTERACTIONS....................................Antidepressants, antipsychotics,
Warfarin, Digoxin, Tegretol, Quinidine
(ix) DOSAGE ..50–100 mg every 4–6 hours; 400 mg
per day maximum
(e) Ketamine

Formulary per General Patient Care Protocols

(f) Naloxone (Narcan®) (IN and/or IV)

Formulary per General Patient Care Protocols

(g) Lidocaine (transdermal for muscular relief, or IM/SQ for stapling as temporizing measure only, alternate dosing regimen)

(i) AVAILABILITY..1% (10 mg/mL) ampules/vials
(ii) ACTION..Injectable anesthetic
(iii) INDICATIONS..Local pain/injury
(iv) CONTRAINDICATIONS..............................Known hypersensitivity
(v) PRECAUTIONS..Should not exceed 4 mg/kg or 300 mg
(vi) OPERATIONAL STATUS............................Operational
(vii) SIDE EFFECTS..With high doses: seizures, lightheadedness, ringing in ears
(viii) INTERACTIONS..
(ix) DOSAGE..Topical application to site of dental pain

(h) Fentanyl Transmucosal (PO)

(i) AVAILABILITY...Lozenge / lollipop 800 mcg
(ii) ACTION..Opioid analgesic
(iii) INDICATIONS..Severe pain/injury
(iv) CONTRAINDICATIONS............................Known hypersensitivity
(v) PRECAUTIONS..Controlled substance. Patient should not bite or chew the lozenge, but rather allow it to dissolve slowly in the mouth.
(vi) OPERATIONAL STATUS............................NON-OPERATIONAL
(vii) SIDE EFFECTS..Patient must be monitored for CNS/ respiratory depression
(viii) INTERACTIONS..
(ix) DOSAGE..Oral application for patient directed analgesia; patient should remove the lollipop once pain is controlled

(i) Clove oil (for topical dental analgesia)

(i) AVAILABILITY..Topical liquid (OTC)
(ii) ACTION...Topical (dental) anesthetic
(iii) INDICATIONS...Dental pain/injury
(iv) CONTRAINDICATIONS..............................Known hypersensitivity
(v) PRECAUTIONS...Penetrating/open intra-oral wounds
(vi) OPERATIONAL STATUS.............................Operational
(vii) SIDE EFFECTS.......................................Topical application to site of dental pain
(viii) INTERACTIONS.......................................
(j) **Ketorolac (Toradol®) (injectable)**

(i) **AVAILABILITY**.................................30 mg/mL IV/IM

(ii) **ACTION**..Non-steroidal anti-inflammatory pain medication

(iii) **INDICATIONS**.................................Mild to moderate pain

(iv) **CONTRAINDICATIONS**......................Known hypersensitivity, renal insufficiency (not failure), PUD/GERD/GI bleed history

(v) **PRECAUTIONS**.................................Do not use with other NSAIDs; caution with concomitant steroid use; aPlasma CC (D 3rd trimester) a?

(vi) **OPERATIONAL STATUS**.....................Operational

(vii) **SIDE EFFECTS**...............................GI upset/nausea; GI bleeding risk

(viii) **INTERACTIONS**..............................

(ix) **DOSAGE**..15–30 mg IM/IV every 6–8 hours

(7) **Sleep/Wake**

(a) **Caffeine (No-Doz®)**

(i) **AVAILABILITY**......................................200 mg tablet

(ii) **ACTION**..Enhances alertness

(iii) **INDICATIONS**.................................Suspected caffeine withdrawal headache; to facilitate functioning with limited rest periods

(iv) **CONTRAINDICATIONS**......................Known hypersensitivity

(v) **PRECAUTIONS**.....................................aL CB a?

(vi) **OPERATIONAL STATUS**.....................Operational

(vii) **SIDE EFFECTS**...............................Insomnia

(viii) **INTERACTIONS**..............................

(ix) **DOSAGE**..200 mg / 3–4 hours as needed

(b) **Zaleplon (Sonata®) (sleeper)**

(i) **AVAILABILITY**.....................................10 mg capsule

(ii) **ACTION**..Anxiolytic/hypnotic; shortest t-1/2 of agents available

(iii) **INDICATIONS**.................................Facilitate rest during non-operational periods in prolonged deployment/transportation; minimum 4-hour block required for usage (6 hours preferred)

(iv) **CONTRAINDICATIONS**......................Known hypersensitivity, unsecure location, lack of assured 4-hour non-operational period

(v) **PRECAUTIONS**.................................May not drive/operate machinery/use weapons for minimum 4 hours post-administration; aL CC a-

(vi) **OPERATIONAL STATUS**.....................NON-OPERATIONAL (x 4 hours after administration)

(vii) **SIDE EFFECTS**...............................Sedation
OPTIONAL SUPPLEMENTAL PROTOCOL
TACTICAL EMERGENCY MEDICAL SERVICES PROTOCOL

(viii) INTERACTIONS...Alcohol/other sedatives potentiate effect
(ix) DOSAGE...10–20 mg with assured 4-hour non-operational block, as approved by MD/DO and Team Commander

(c) Modafinil (Provigil®)
(i) AVAILABILITY..200 mg tablet
(ii) ACTION..Enhances alertness/concentration
(iii) INDICATIONS..To facilitate functioning with limited rest periods
(iv) CONTRAINDICATIONS........................Known hypersensitivity
(v) PRECAUTIONS..aL CC "?
(vi) OPERATIONAL STATUS.........................Operational
(vii) SIDE EFFECTS..Insomnia, mild blood pressure elevation
(viii) INTERACTIONS......................................
(ix) DOSAGE ...200 mg once daily

(8) Wound Management
(a) Cyanoacrylate tissue adhesive (Dermabond®)
(i) AVAILABILITY..Single use ampoules
(ii) ACTION..Tissue adhesive
(iii) INDICATIONS...Minor trauma
(iv) CONTRAINDICATIONS........................Known hypersensitivity
(v) PRECAUTIONS..Avoid near eyes
(vi) OPERATIONAL STATUS.........................Operational
(vii) SIDE EFFECTS..Transient local discomfort
(viii) INTERACTIONS.................................N/A
(ix) DOSAGE ...As required for wound closure, 2–4 layered applications

(b) Topical hemostatic dressing
(i) AVAILABILITY..Individual use packages
(ii) ACTION...Promotes blood clotting
(iii) INDICATIONS..Hemorrhage
(iv) CONTRAINDICATIONS........................Known hypersensitivity
(v) PRECAUTIONS..Standard/universal precautions for wound care
(vi) OPERATIONAL STATUS.........................NON-OPERATIONAL
(vii) SIDE EFFECTS..N/A
(viii) INTERACTIONS.................................N/A
(ix) DOSAGE...Single or multiple dressings applied to bleeding wound

(c) Steri-strips
(i) AVAILABILITY..Individual use packages
(ii) ACTION...Facilitates closure of wounds
(iii) INDICATIONS..Superficial wounds
(iv) CONTRAINDICATIONS........................Known hypersensitivity to adhesive
OPTIONAL SUPPLEMENTAL PROTOCOL
TACTICAL EMERGENCY MEDICAL SERVICES PROTOCOL

(v) PRECAUTIONS..................Standard/universal precautions for wound care
(vi) OPERATIONAL STATUS...........Operational
(vii) SIDE EFFECTS..................N/A
(viii) INTERACTIONS.................N/A
(ix) DOSAGE..........................Single or multiple dressings applied for wound closure; per MD/DO

(d) Staples
(i) AVAILABILITY.....................Individual use staple dispensers
(ii) ACTION............................Facilitates closure of wounds
(iii) INDICATIONS.....................Wounds
(iv) CONTRAINDICATIONS...........Contaminated wounds, wounds with foreign body material
(v) PRECAUTIONS..................Standard/universal precautions for wound care
(vi) OPERATIONAL STATUS...........Operational
(vii) SIDE EFFECTS..................N/A
(viii) INTERACTIONS.................N/A
(ix) DOSAGE..........................Single or multiple dressings applied for wound closure; per MD/DO

(9) ACLS/Resuscitation
(a) Albuterol MDI
(i) AVAILABILITY.....................0.83 mcg metered dose inhaler
(ii) ACTION............................Bronchodilator
(iii) INDICATIONS.....................Respiratory distress/bronchospasm
(iv) CONTRAINDICATIONS.........Known hypersensitivity
(v) PRECAUTIONS..................Standard/universal precautions for respiratory patient
(vi) OPERATIONAL STATUS.........NON-OPERATIONAL
(without MD/DO consult)
(vii) SIDE EFFECTS..................N/A
(viii) INTERACTIONS.................N/A
(ix) DOSAGE..........................2 puffs, may be repeated two additional times. Additional doses per MD/DO

(10) Anti-hypoglycemics
(a) Oral glucose

Formulary per General Patient Care Protocols
W. TRANSPORT OF ACUTE VENTILATED INTERFACILITY PATIENTS

1. PURPOSE
 To define the indications for use of a mechanical ventilator by a paramedic for the acute ventilated patient
 a) The level of care required for the interfacility transport of the “acute ventilated interfacility patient” is beyond the routine training curriculum for a paramedic; this type of patient must be transported by a higher level health care clinician who is credentialed, educated, and competent in dealing with the ventilator and the ventilated patient. OR
 b) When a critical interfacility transfer is needed and a credentialed, educated, and competent higher level health care clinician is genuinely unavailable, a credentialed, educated, and competent paramedic (through a MIEMSS-approved training program) may attend the ventilator and the ventilated patient with the addition of a second ALS clinician or advanced airway trained health care clinician when determined appropriate by the sending/referring physician.

2. INDICATIONS
 ACUTE VENTILATED PATIENTS for the interfacility transport are defined as:
 a) Intubated OR
 b) Tracheostomy patient when the reason for transport is:
 (1) For increased level of care from a hospital, OR
 (2) To continue the same level of care in an acute care setting, OR
 (3) The new tracheostomy patient, within the last 7 days

3. VENTILATOR STANDARDS
 a) ACUTE VENTILATOR DEVICE STANDARDS
 (1) The ventilator that the service is to use for the acute ventilated patient should be able to match the existing ventilator settings. The following minimum device features (including circuit) must be present for this category of patient:
 (a) Set rate of ventilations
 (b) Adjust delivered Tidal Volume
 (c) Adjustable Pressure Support Settings
 (d) Adjustable Inspiratory and Expiratory ratios (I:E ratio)
 (e) Positive End-Expiratory Pressure (PEEP)
 (f) Peak airway pressure gauge
 (g) Continuous Expiratory Volume measurement (Required)
 (h) Modes
 (i) Assist Control (AC)
 (ii) Synchronized Intermittent Mandatory Ventilation (SIMV)
 (iii) Controlled Mechanical Ventilation (CMV)
 (i) Alarms
OPTIONAL SUPPLEMENTAL PROGRAM
TRANSPORT OF VENTILATED PATIENTS
PARAMEDIC ONLY

(i) Peak airway pressure
(ii) Disconnect

(2) Strongly recommended options are:
 Blend percentage oxygen

(3) Must perform periodic maintenance (including calibration)
 meeting the manufacturer’s specifications

b) ACUTE VENTILATOR USAGE

(1) A ventilator maintained by the ambulance service or health care
 facility must be specifically designed for transport use and
 capable of providing the required settings.

(2) Continuous pulse oximeter and continuous capnography
 monitoring equipment must be used on all acute ventilated
 interfacility patients.

(3) Tracheal suctioning kits/catheters must be available.

(4) A tracheostomy replacement tube the same size and one size
 smaller shall be transported with the patient ventilated through a
 tracheostomy. (The endotracheal tube equivalent may be
 substituted.)

4. POTENTIAL ADVERSE EFFECTS

 a) Pneumothorax
 b) Barotrauma
 c) Hypoxemia
 d) Hyperventilation
 e) Hypoventilation
 f) Extubation of endotracheal or tracheostomy tube

5. PRECAUTIONS

 If any problems arise with mechanical ventilation, the patient shall be
 disconnected from the ventilator and manually ventilated.

6. OPTIONAL PROGRAM REQUIREMENTS

 a) A special “Ventilated Patient” report form will be completed for each
 mechanically ventilated patient and will include vital signs, pulse
 oximeter readings, and lung sounds (recorded a minimum of every 5
 minutes), and documentation of any of the following:
 (1) cardiac arrest during transport,
 (2) dislodgment of tracheostomy tube or endotracheal tube,
 (3) equipment failure (with FDA report),
 (4) discontinuance of ventilator and conversion to BVM,
 (5) deterioration of patient, or
 (6) the upgrading of patient care to critical care.

 b) The Optional Program will require a training program that meets or
 exceeds the “Acute Ventilated Interfacility Patient” curriculum and is
 approved by the operational program medical director with skills
 validation. A copy of the training program shall be reviewed and be
 approved or disapproved by MIEMSS.
X. OPTIONAL PROGRAM TRANSPORT OF CHRONIC AND SCENE VENTILATED PATIENTS

1. PURPOSE
To define the indications for use of a mechanical ventilator:

a) Chronic ventilated patient
 The level of care required for the interfacility transport of "chronic ventilated patients" is within the scope of practice of a paramedic who has been credentialed, is competent, and received adequate training specific to the patient’s condition and the equipment necessary to provide care. Exception: A CRT-I or EMT may transport a chronically ventilated patient who is going for routine medical care and has in attendance a patient provided attendant who can manage the patient’s own ventilator.

b) Patient ventilated at the scene of an emergency
 The level of care required for the transport of a ventilated patient from the "scene of an emergency" is within the scope of practice of a paramedic who has been credentialed, is competent, and received adequate training specific to the patient’s condition and the equipment to provide care.

2. INDICATIONS

a) CHRONIC VENTILATED PATIENTS are defined as:
 (1) Tracheostomy is more than 7 days old. If tracheostomy has been in place for 7 days or less, see "Transport of Acute Ventilated Interfacility Patients" Protocol. (NEW ’20)
 (2) Ventilator settings that have no changes within 24 hours or changes reflecting improvement in the patient; and
 (3) Point of origin or destination is:
 (a) Long-term care facility,
 (b) Home,
 (c) Outpatient setting,
 (d) Hospital; and
 (4) Reason for transport is:
 (a) Return from or transport to a scheduled appointment, or
 (b) For extended care, or
 (c) For emergency treatment (but not complication of airway or respiratory distress); and
 (5) Ventilator settings are:
 (a) Positive End-Expiratory Pressure (PEEP) less than or equal to 10
 (b) Peak pressures less than or equal to 30, and
 (c) No changes in the ventilator settings are required during the transport.

b) SCENE OF AN EMERGENCY – Out-of-Hospital
 (1) Point of origin is at the scene of an out-of-hospital emergency
 (2) A paramedic may utilize mechanical ventilation once the patient is intubated.
 (3) Reason for mechanical ventilation is respiratory arrest or when the patient is intubated and not bucking the ventilator.
 (4) Once the patient is on a ventilator, a second clinician (EMT or higher) is required to assist with patient care.
3. **VENTILATOR STANDARDS**

a) **CHRONIC VENTILATOR DEVICE STANDARDS**

(1) The ventilator that the service is to use for the acute or chronically ventilated patient should be able to match the existing ventilator settings. The following minimum device features (including circuit) must be present for this category of patient:

(a) Set rate of ventilations
(b) Adjust delivered Tidal Volume
(c) Adjustable Pressure Support Settings
(d) Adjustable Inspiratory and Expiratory ratios (I:E ratio)
(e) Positive End-Expiratory Pressure (PEEP)
(f) Peak airway pressure gauge

(g) Modes
 (i) Assist Control (AC)
 (ii) Synchronized Intermittent Mandatory Ventilation (SIMV)
 (iii) Controlled Mechanical Ventilation (CMV)

(h) Alarms
 (i) Peak airway pressure
 (ii) Disconnect

(2) Strongly recommended options are:

(a) Continuous Expiratory volume measurement
(b) Blend percentage oxygen

(3) Must perform periodic maintenance (including calibration) meeting the manufacturer’s specifications

b) **CHRONIC VENTILATOR USAGE**

(1) Ventilator used is:

(a) The patient’s own ventilator intended for home/transport use and have the patient, home-care clinician, or staff member from the health care facility manage the ventilator, or

(b) A ventilator maintained by the ambulance service or health care facility specifically designed for transport use and capable of providing the required settings. If the patient’s ventilator is the same as the company ventilator, the paramedic may manage the ventilator without the home-care clinician accompanying patient. Exception: A CRT-I or EMT may transport a chronically ventilated patient who is going for routine medical care and has in attendance a patient provided attendant who can manage the patient’s own ventilator.

(2) Monitoring equipment must include pulse oximeter (provided by family or service).

(3) Tracheal suctioning kits/catheters must be available.

(4) A replacement tracheostomy tube the same size and one size smaller shall
be transported with the patient ventilated through a tracheostomy. (The endotracheal tube equivalent may be substituted.)

c) **SCENE OF AN EMERGENCY VENTILATOR DEVICE STANDARDS**
Mechanical ventilator used must:
(1) Be intended for transport use,
(2) Deliver 100% oxygen, and
(3) Have minimal parameters to set rate and volume (both adjustable to meet the needs of pediatric and adult patients)

4. **POTENTIAL ADVERSE EFFECTS**
 a) Pneumothorax
 b) Barotrauma
 c) Hypoxemia
 d) Hyperventilation
 e) Hypoventilation
 f) Extubation of endotracheal or tracheostomy tube

5. **PRECAUTIONS**
 a) Any acutely ill or injured breathing patient at the “scene of an emergency” requiring assisted ventilation shall be manually ventilated.
 b) If any problems arise with mechanical ventilation, the patient shall be disconnected from the ventilator and manually ventilated.
 c) The Optional Program will require a training program that meets or exceeds the “Chronic and Scene Ventilated Patient” curriculum and be approved by the operational program medical director. A copy of that training program shall be reviewed and be approved or disapproved by MIEMSS.
Y. TRANSPORT TO FREESTANDING EMERGENCY MEDICAL FACILITY AT BULLE ROCK (BASE STATION)

1. PURPOSE
To define the type of patient an EMS service may transport to a MIEMSS-designated freestanding medical facility.

2. INDICATIONS
A jurisdiction may allow transport of a patient, who meets one or more of the following indications, to a freestanding emergency medical facility.
 a) A stable Priority 2, 3, or 4 patient as outlined in *The Maryland Medical Protocols for EMS* who does not need a time-critical intervention
 b) Priority 1 patient with an unsecured airway or in extremis, who requires stabilization beyond the capability of the EMS crew (e.g., cardiac or respiratory arrest)
 c) If the freestanding emergency medical facility is a MIEMSS-designated Acute Stroke Ready Facility, patients of all priority that meet stroke criteria may be transported to the Acute Stroke Ready Facility, as long as the transport time to a Primary Stroke or Comprehensive Stroke Center is greater than 15 additional minutes.

3. CONTRAINDICATIONS
Except as provided in Indications, above, the following patients shall not be transported to a freestanding emergency medical facility.
 a) Any patient meeting the criteria for transport to a Trauma Center or Specialty Referral Center as defined in *The Maryland Medical Protocols for EMS*
 b) A pregnant patient complaining of abdominal pain or a patient who is in active labor
 c) Any patient in need of time-critical intervention that can be provided only at a hospital-based emergency department

4. PROCEDURE
The EMS clinician shall consult with a designated Base Station at the freestanding emergency medical facility, or the nearest Base Station if the freestanding emergency medical facility is not a designated Base Station, prior to arrival on all Priority 1 and 2 transports as provided in Indications and when otherwise unclear of the appropriate destination. The designated Base Station shall direct the clinician to the appropriate destination.

5. SPECIAL CONSIDERATIONS
None
Z. TRANSPORT TO FREESTANDING EMERGENCY MEDICAL FACILITY
(BASE STATION OR NON–BASE STATION)

1. PURPOSE
 The purpose of this protocol is to define the type of patient an EMS service may transport to a MIEMSS-designated freestanding emergency medical facility.

2. INDICATIONS
 A jurisdiction may allow transport of a patient, who meets one or more of the following indications, to a freestanding emergency medical facility.
 a) A stable Priority 2, 3, or 4 patient as outlined in *The Maryland Medical Protocols for EMS* who does not need a time-critical intervention
 b) Priority 1 patient with an unsecured airway or in extremis, who requires stabilization beyond the capability of the EMS crew (e.g., cardiac or respiratory arrest)

3. CONTRAINDICATIONS
 Except as provided in INDICATIONS, above, the following patients shall not be transported to a freestanding emergency medical facility.
 a) Any patient meeting the criteria for transport to a Trauma Center or Specialty Referral Center as defined in *The Maryland Medical Protocols for EMS*
 b) A pregnant patient complaining of abdominal pain or a patient who is in active labor
 c) Any patient in need of time-critical intervention that can be provided only at a hospital-based emergency department

4. PROCEDURE
 The EMS clinician shall consult with a designated Base Station at the freestanding emergency medical facility, or the nearest Base Station if the freestanding emergency medical facility is not a designated Base Station, prior to arrival on all Priority 1 and 2 transports as provided in INDICATIONS and when otherwise unclear of the appropriate destination. The designated Base Station shall direct the clinician to the appropriate destination.

5. SPECIAL CONSIDERATIONS
 None
Viral Syndrome Pandemic

Triage Protocol

EFFECTIVE March 17, 2020 until rescinded or superseded

For Use By BLS and ALS Clinicians

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>
| ☐ | ☑ | Patient age is between 2 and 55 years
| ☑ | ☐ | Patient has a suspected viral syndrome with at least two (2) of the following symptoms: fever, cough, body aches, or sore throat
| ☑ | ☑ | Patient has a history of immunosuppression, or is taking medicines that depress the immune system (cancer undergoing chemotherapy, transplant patient, HIV, etc.)
| ☑ | ☑ | Patient has a history of diabetes
| ☑ | ☑ | Patient has a history of heart disease
| ☑ | ☑ | Patient has a history of COPD or lung disease
| ☑ | ☑ | Patient has a heart rate between 50 - 110 bpm (age 13-55 years); (age 2-5 years: 80-140 bpm; age 6-12 years: 70-120 bpm)
| ☑ | ☑ | Patient has a systolic blood pressure between 110-180 mmHg (age 13-55 years); (age 2-5 years: > 80mmHg; age 6-12 years: > 90mmHg)
| ☑ | ☑ | Oxygen saturation (SpO2) greater than or equal to 94%
| ☑ | ☑ | Clear lung sounds
| ☑ | ☑ | Respiratory rate between 12 - 22 breaths per minute, and the patient does not complain of shortness of breath
| ☑ | ☑ | Patient is able to ambulate without difficulty
| ☑ | ☑ | Patient is agreeable to home self-care

ANY CHECKS in a shaded box indicate that patient transport should be encouraged.

If **ALL CHECKS** are in non-shaded boxes, patient may provide self-care at home.

Refer to no-transport instructions for patients.

Any patient may be transported at the EMS Clinician's discretion.

This emergency protocol was issued by the Maryland Institute for Emergency Medical Services Systems, after approval by the Executive Director and Chairman of the State Emergency Medical Services Board, in response to the COVID-19 pandemic, and in accordance with Education Article Section 13-516(d)(1) and COMAR 30.03.05.02(I) and a catastrophic health emergency proclamation.
Maximize the Use of Limited Resources Alternative Dispatch Protocols

<table>
<thead>
<tr>
<th>Dispatch Priority Level (match vendor or call center based dispatch protocol/tiered algorithm)</th>
<th>Response (Standard Operating Mode)</th>
<th>Level 1(A) Activation of Card 36 and ONLY for use in 6, 10, 18, and 26 DSS1 BELOW IS BACK UP STRATEGY FOR EMD WITHOUT CARD 36</th>
<th>Level 2(B) Implement Declining Response / Configuration CAD Table (Moderate) + Card 36 (6,10,18 & 26)</th>
<th>Level 3(C) Implement Declining Response / Configuration CAD Table (Severe) + Card 36 (6,10,18 & 26) DSS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification 1 (*Echo) Confirmed Cardiac Arrest (Not Breathing, Unresponsive per 911 call) (MPD cards - 2, 6, 9, 11,15, 31)</td>
<td>Closest AED Unit and Closest 1st Responder and Closest ALS Ambulance</td>
<td>Closest AED Unit and Closest 1st Responder and Closest BLS Ambulance if available</td>
<td>-Closest AED Unit and Closest 1st Responder if available</td>
<td>- Closest AED Unit If available</td>
</tr>
<tr>
<td>Classification 2 (*Delta) Life Threatening Emergency/Potentially Life Threatening/Confirmed Unstable Patient(s)</td>
<td>Closest 1st Responder and Closest ALS Ambulance</td>
<td>- Closest 1st Responder and Closest ALS Ambulance if available; BLS ambulance if ALS unit not available</td>
<td>Closest 1st Responder and Closest Ambulance available (ALS or BLS)</td>
<td>- Closest 1st Responder and Closest Ambulance if available (ALS or BLS)</td>
</tr>
<tr>
<td>Classification 3 (*Charlie) Non-Critical/Currently Stable Patient(s) Requiring ALS Assessment</td>
<td>Closest ALS Ambulance</td>
<td>Closest Ambulance available (ALS or BLS)</td>
<td>Closest Ambulance available (ALS or BLS)</td>
<td>- Closest 1st Responder if available or - Closest stand-in responder unit</td>
</tr>
<tr>
<td>Classification 4 (*Bravo) BLS Assessment for unknown/possibly dangerous scenes</td>
<td>Closest 1st Responder and Closest BLS Ambulance</td>
<td>Closest 1st Responder and Closest BLS Ambulance if available</td>
<td>Closest 1st Responder</td>
<td>- Trauma Closest 1st Responder - Medical Referral to Nurse or Health Department Advice Phone service if available; or self-transport to Alternate Care Site</td>
</tr>
<tr>
<td>Classification 5 (*Alpha) BLS Treatment</td>
<td>BLS Ambulance</td>
<td>Alternate Care Referral</td>
<td>Alternate Care Referral</td>
<td>Alternate Care Referral</td>
</tr>
<tr>
<td>Classification 6 (*Omega) Non-Ambulance Care</td>
<td>Alternate care such as Poison Control Center; Police/Fire service call, etc.</td>
<td>Alternate care such as Poison Control Center; Police/Fire service call, etc.</td>
<td>Alternate care such as Poison Control Center; Police/Fire service call, etc.</td>
<td>Alternate care such as Poison Control Center; Police/Fire service call, etc.</td>
</tr>
</tbody>
</table>
BB. WILDERNESS EMS

A. INTRODUCTION

These protocols are complementary to *The Maryland Medical Protocols for Emergency Medical Services*. They are to be utilized only under the following conditions:

1. The protocols are being utilized in a defined wilderness environment.
2. The EMS jurisdiction has been authorized to utilize wilderness EMS protocols.
3. The EMS clinician has been credentialed as a wilderness EMS clinician (see B.1.b).
4. The EMS clinician is functioning under appropriate wilderness EMS medical direction.

B. DEFINITIONS

1. Wilderness Environment
 a) A wilderness environment is defined as “any geographic area where the typical urban resources are not adequate for the management of an injured or sick patient.” Some examples include woodland areas, mountainous terrain, uneven terrain where traditional urban EMS equipment and stretchers are not able to safely function, rivers, and ski hills.
 b) In order to be considered a Wilderness EMS (WEMS) clinician, the clinician needs to have completed additional training beyond that required to function in the urban environment. This training can be completed by any of the following methods:
 (1) Completion of the State of Maryland Wilderness EMS Course
 (2) Alternatively, the clinician may demonstrate proficiency in the skills of wilderness EMS after providing proof of completion of a nationally recognized wilderness EMS program. Five programs that are nationally recognized are:
 (a) National Outdoor Leadership School’s Wilderness Medical Institute
 (b) National Ski Patrol’s Outdoor Emergency Care program
 (c) Stonehearth Open Learning Opportunities
 (d) Wilderness Medical Associates
 (e) American Health Safety Institute
 (3) Basic Life Support (BLS) clinicians include both the EMTs and WEMRs who meet these credentialing processes
2. Wilderness EMS Physician
 a) In order to be considered a wilderness EMS physician, the physician needs to have fulfilled the requirements in order to function as a medical director under COMAR 30.03.03 and be recognized by the State EMS Medical Director as being qualified to provide medical direction in the wilderness environment. Expertise in wilderness EMS may be demonstrated by:
 (1) Completion of a recognized program in wilderness medicine
 (2) At least 2 years of experience functioning in the wilderness environment under the defined capacity of a wilderness medical practitioner
3. Wilderness EMS Jurisdiction
 a) In order to be recognized as a wilderness EMS jurisdiction the following parameters must be met:
 (1) A written request with a demonstrated need
 (2) EMS clinicians credentialed as Wilderness Clinicians
 (3) The clinicians are functioning under a state recognized wilderness EMS medical director
b) As there is limited utility for a ground ambulance in the wilderness environment, the wilderness EMS jurisdiction need not be required to have a primary transport vehicle in order to be recognized as a wilderness EMS jurisdiction. However, since the patient will likely eventually need transport to definitive care by ground and/or air ambulance, the wilderness EMS jurisdiction needs to have a plan for transportation once the patient(s) is out of the wilderness environment. Thus, there must be readily available and functioning communication methods between the wilderness EMS jurisdiction and the local EMS jurisdiction. Further, in order to facilitate timely and appropriate post-wilderness care, if the WEMS program is not a section of a previously established public safety EMS transporting jurisdiction, the wilderness EMS jurisdiction must notify the jurisdiction that will be responsible for ground or air transport as soon as the need for transport has been confirmed. Ideally this communication should occur through direct communication with the transporting jurisdiction’s emergency communication center rather than simply dialing 9-1-1.

C. SCOPE OF PRACTICE

1. Provision of medical care in the wilderness environment is unique in that delays of care due to the remoteness of the environment may be detrimental to the patient. In order to address the unique needs and specialized skills required to manage a patient in the wilderness, these protocols and the training required to utilize these protocols will serve to define the scope of practice of the WEMS clinician. Therefore, THE TERM CLINICIAN IS GENERIC AND DOES NOT IMPLY A SPECIFIC LEVEL OF MEDICAL TRAINING. THE WILDERNESS CLINICIAN MAY BE TRAINED TO ANY LEVEL AND COULD BE A PHYSICIAN, PARAMEDIC, CARDIAC RESCUE TECHNICIAN, EMT, OR WILDERNESS EMERGENCY MEDICAL RESPONDER.

2. In order for the EMS clinician to use these wilderness EMS protocols there must be a need demonstrated in which it is documented that without these protocols:
 a) It would not be possible to safely extricate the patient from the environment or
 b) There is a high risk of the patient or other public safety personnel incurring permanent disability or death without the use of the WEMS Protocols

D. TRANSFER OF CARE

1. Care is transferred from the WEMS clinician to the transporting EMS clinician at the point at which the patient is either:
 a) No longer in the wilderness environment, or
 b) The wilderness EMS clinician has formally transferred care to the transporting clinician.

2. There may be times in which the WEMS clinician’s expertise is needed after transfer of care to the transporting jurisdiction. If this is the case:
 a) The highest trained WEMS clinician shall ride to the hospital with the patient.
 b) Conflicts shall be resolved by contacting the medical director for the WEMS jurisdiction and then the local EMS Base Station medical control.
E. DOCUMENTATION/QUALITY IMPROVEMENT

1. At the completion of the rescue, the WEMS clinicians must fill out a patient chart in compliance with the MIEMSS charting system.

2. A brief written report shall be provided to the transporting agency with the following information:
 a) Patient name, age, gender
 b) Pertinent history of the case
 c) Vital signs and other pertinent physical findings
 d) Care rendered

3. WEMS clinicians must demonstrate proficiency to the WEMS Medical Director on an annual basis via skills testing and/or documentation of the utilization of skills in the field. This may be demonstrated through regular field training exercises.

4. Review of each call:
 a) Upon completion of the WEMS event, notification of the utilization of the WEMS Protocols will be made to the appropriate EMS supervisor.
 b) The WEMS Medical Director will review 100% of WEMS calls as soon as is reasonably possible. Ideally this should be done within 48 hours of the event.
 c) The WEMS program will maintain a detailed WEMS database and will provide an annual report to the State EMS Medical Director.

TREATMENT PROTOCOLS

The wilderness EMS clinician shall have responsibilities for part or all of these protocols, summarized as follows, based on BLS or ALS level of certification/licensure:

<table>
<thead>
<tr>
<th>Intervention</th>
<th>BLS</th>
<th>ALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision of access to medications:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibuprofen, Acetaminophen, Oral electrolytes, Calcium Carbonate tablets (e.g. Tums), ranitidine, diphenhydramine, epinephrine, aspirin, albuterol, ondansetron ODT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration of medications in Protocol, not listed above</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Hemorrhage control with hemostatic agent and tourniquet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King Airway</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Surgical Cricothyroidotomy</td>
<td>•</td>
<td>(Paramedic only)</td>
</tr>
<tr>
<td>Wound closure with steri-strips or other tissue tape</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Wound closure with tissue adhesive</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Pelvic Binder</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
A. Airway
1. Initiate general patient care as per The Maryland Medical Protocols for Emergency Medical Services.
2. Assess the patient’s airway and determine if the patient’s airway is patent, intact, or compromised.
3. If the airway is compromised, establish a patent airway using one of the following techniques:
 a) Insert an oral-pharyngeal airway or naso-pharyngeal airway.
 b) Tack the patient’s tongue to the patient’s lip using a safety pin.
 c) Insert a KING airway per protocol.
ALS SKILL (PARAMEDIC ONLY)
 d) If unable to insert a KING airway and unable to keep the airway open with a non-invasive technique, then proceed to a surgical cricothyroidotomy.

B. Cardiac Arrest
1. Initiate general patient care as per The Maryland Medical Protocols for Emergency Medical Services.
2. Perform CPR.
3. If equipped with AED, utilize as appropriate.
4. Continue CPR and utilization of AED per protocol until there is Return of Spontaneous Circulation (ROSC).
5. If an AED is present, the resuscitation may be terminated per the TOR Protocol.
 TOR conditions requiring physician consult are waived, such that clinicians may terminate without consult.
6. If an AED is not present, the resuscitation may be terminated if there is no ROSC after 30 minutes of resuscitative efforts.
7. Resuscitation may also be terminated if rescuers are exhausted or in danger.

C. Asthma
1. Initiate general patient care as per The Maryland Medical Protocols for Emergency Medical Services.
2. Administer albuterol MDI – 2 puffs every hour as needed; may administer up to 4 puffs per hour.
3. Consider administration of epinephrine (manual or auto-injector) for severe asthma.
4. Pediatrics less than 30 kg estimated weight administer 0.15 mg IM
5. Pediatrics greater than 30 kg estimated weight and adults administer 0.5 mg IM
ALS SKILL
6. Consider administration of dexamethasone
 (a) Pediatrics – 0.5 mg/kg to max of 10 mg every 24 hours
 (b) Adults – 10 mg every 24 hours
All Clinicians
7. Continue treatment and monitoring of patient.
8. Transport to definitive care.

D. Acute coronary syndrome
1. Initiate general patient care as per The Maryland Medical Protocols for Emergency Medical Services.
2. Acute coronary syndrome may be difficult to diagnose in the wilderness environment without the use of a 12-lead EKG. WEMS clinicians should have a high index of suspicion in a patient complaining of chest pain, shortness of breath, or extreme fatigue without an alternate explanation for these symptoms.

3. Closely monitor vital signs during patient contact.

4. Provide oxygen if available at 2 liters per nasal cannula or as needed to treat symptoms or keep oxygen saturation above 90% if a pulse oximetry is available.

5. Administer aspirin 324 mg (81 mg low-dose aspirin X 4) or 325 mg aspirin chewed.

6. Expedite transport out of the wilderness.

E. Shock

1. Patients presenting with shock will exhibit signs of poor perfusion to critical organs.

2. The patient may or may not be hypotensive.

3. The most common reason for shock in trauma is hemorrhage.

4. Treat the underlying cause. Control external bleeding.

5. Control for environmental conditions.

ALS SKILL

6. If carrying IV/IO fluids, establish IV access and administer parenteral fluids with Lactated Ringer’s (LR).

7. Pediatrics 20 mL/kg bolus to maintain a radial pulse and to maintain normal mentation

8. Adults 500–1,000 mL bolus to maintain a radial pulse and to maintain normal mentation

9. Continue fluids to maintain peripheral perfusion.

ALL CLINICIANS

10. Expedite transport.

F. External Bleeding

1. Initiate general patient care as per The Maryland Medical Protocols for Emergency Medical Services.

2. Control external bleeding with direct pressure.

3. If unable to control extremity bleeding with direct pressure, apply tourniquet proximally to the site of bleeding. Note the time and date of the tourniquet application. If time of delivery of patient to definitive care is expected to exceed 12 hours, then it is appropriate to release the tourniquet every 2 hours. However if tourniquet is released, closely observe area for bleeding and immediately reapply if bleeding resumes.

4. If unable to control bleeding in site other than extremity, or if unable to get control of bleeding with a tourniquet, then apply hemostatic impregnated gauze or hemostatic agent (HemCon® or similar product) per manufacturer instructions.

G. Wound Care

1. Initiate general patient care as per The Maryland Medical Protocols for Emergency Medical Services.

2. Once bleeding has been controlled, assess the size and depth of the wound.
Assess for extent of contamination. In addition, assess for any suspicion of underlying broken bones or dislocated joints in association with the wound.

3. Irrigate the wound. Ideally the wound should be irrigated with high pressure. High pressure irrigation devices can be created with a syringe or a plastic bag with a small hole. Irrigate with water that is clean enough to drink. Irrigate until all visible foreign bodies have been removed.

4. Assess need for primary closure of wound.
 a) In the wilderness setting, large wounds may warrant primary closure if time to definitive treatment is greater than 4 hours.
 b) Primary closure can be achieved with:
 (1) Steri-strips or other tape (duct tape works well)

ALS SKILL
 (2) Tissue adhesive (Dermabond® or similar product)
 (3) Staples (Physician only skill)
 (4) Sutures (Physician only skill)

 c) Wounds that persist with foreign bodies despite adequate irrigation should not be primarily closed.
 d) Unless there will be a significant delay of transport of patient to definitive care (i.e., greater than 12 hours) do not primarily close facial wounds in the wilderness environment.

5. Assess need for administration of antibiotics
 a) Wounds that warrant antibiotic prophylaxis include:
 (1) Grossly contaminated wounds
 (2) Wounds with obvious involvement of broken bones or joint spaces
 (3) Wounds with involvement of tendons or ligaments
 (4) Mammalian bites
 b) Antibiotic that may be used include:
 (1) Amoxicillin-clavulanate (Augmentin®) – 10 mg/kg or 500 mg of the amoxicillin component every 8 hours
 (2) Cephalexin (Keflex®) – 10 mg/kg or 500 mg every 6 hours
 (3) Bactrim® 5 mg/kg every 12 hours or 1 DS every 12 hours
 (4) Clindamycin 10 mg/kg every 8 hours or 300 mg every 8 hours

ALL CLINICIANS
 6. Cover wound with bacitracin antibiotic ointment.
 7. Cover wound with sterile gauze and gauze wrap.

H. Altered mental status
 1. The differential of altered mental status is quite broad, including:
 a) Traumatic brain injury
 b) Stroke
 c) Infection
 d) Acute coronary syndrome
 e) Intoxication
 f) Hypoglycemia
 2. If there is any possibility of trauma, protect the patient’s cervical spine.
 3. If unable to check glucose with a glucometer, assume that the patient is hypoglycemic and treat accordingly.
a) Gently rub glucose paste on the inside of the patient’s cheek, 10–15 grams.

ALS SKILL
b) If carrying glucagon, administer 1 mg IM (0.5 mg if less than 25 kg).
c) If carrying IV medications, administer dextrose.
d) 1 amp D50 IV for adults
e) 1–2 mL/kg D50 for children greater than 2 years old
f) 2–4 mL/kg D25 for children less than 2 years old

ALL CLINICIANS
4. Transport out of the wilderness.

I. Traumatic Brain Injury
1. Initiate general patient care as per the MIEMSS protocols.
2. Any patient with a blow to the head and the following findings should prompt the WEMS clinician to initiate rapid transportation to a trauma center:
a) GCS less than 13 or a motor score less than 6
b) Rapidly declining GCS
c) Debilitating headache
d) Profuse vomiting
e) Raccoon’s eyes
f) Battle’s signs
g) Seizures
3. Control the cervical spine and airway as needed.
4. In a patient with a blow to the head, no loss of consciousness, but at least a brief period of confusion or loss of memory, closely observe and extricate from the wilderness environment. Watch for deterioration of mental status. The patient should be cleared by a physician prior to resuming activities at risk for head injury.

J. Back Injury/Spinal Cord Injury
1. Extrication of a fully immobilized patient from the wilderness environment can be quite difficult and pose increased risks to both the patient and rescuers. Therefore, despite a significant mechanism of injury, patients who have concern for spinal column injury and/or meet criteria for the Spinal Protection Protocol should be allowed to ambulate on their own volition as long as the patient is alert, reliable, and has no major neurological deficits.
2. Patients who have evidence of neurological deficit and/or those who are not able to safely ambulate on their own volition shall be secured in an extrication device in a manner that conforms, as much as possible, to the normal contours of the spine and minimizes, as much as possible, movement of the spinal column.
3. Any patient who has been secured in an extrication device should have placement of a diaper for control of urine, especially if the transport time to definitive care is expected to be greater than one hour.

K. Diagnosis of fractures in the wilderness will be based on clinical findings rather than radiologic studies.
1. Things to assess when considering if a patient has a possible fracture requiring im-
2. Mobilization are:
 a) Ability of the patient to bear weight or use the affected limb
 b) Evidence of angulations, deformities, crepitus, bruising
 c) Did the patient hear a breaking sound or feel the bone breaking?

3. Assess distal neurological as well as vascular function.

4. If the patient does NOT have intact distal pulses, then manually reduce by bringing the affected area back to a near anatomic alignment.

5. The general principle of splinting is to immobilize the joint above and below the site of suspected fracture. Provide adequate padding. Splints may be commercially designed or improvised. Assess pulses before and after splinting. Perform frequent vascular checks during transportation.

6. Consider placing a diaper on the patient to catch urine—especially for fractures of the lower extremities that will prevent the patient from being able to urinate unaided.

6. Specific splinting guidelines are as follows:
 a) Shoulder and upper arm
 (1) Immobilize as needed for comfort.
 (2) Place in a sling and swath.
 b) Lower arm
 (1) Immobilize, including the wrist and elbow.
 (2) Place in sling and swath.
 c) Hand
 (1) Realign misangulated digits as needed.
 (2) Place a soft roll of gauze in the hand.
 (3) Wrap with a bandage.
 d) Hip
 (1) Immobilize both upper legs together, placing padding between the legs.
 (2) Place on a stretcher.
 (3) Carry out.
 (4) Do not place patient in traction.
 e) Pelvis
 (1) Assess for injury to vagina or penis.
 (2) Pelvic fracture is noted by instability of the pelvis.
 (3) Immobilize with commercially available pelvic binder or improvised pelvic binder.
 (4) Expedite transport to a trauma center.
 f) Femur
 (1) Immobilization of femur fractures with traction splints is no more effective than immobilization to the unaffected leg and transport on a stretcher. In the WEMS setting, the clinician should use judgment and either use a traction splint or immobilize the injured leg to the unaffected leg.
 (2) Immobilize the fractured leg to the uninjured leg with adequate padding or use a traction splint.
 (3) Place padding behind the knees.
 (4) Carry the patient out on a stretcher.
 g) Knee
 (1) Patellar fractures typically occur due to a direct blow to the patella.
 (2) The patient is likely to have significant pain and not want to fully extend
the knee.
(3) Immobilize with a circumferential splint ensuring that the popliteal artery behind the knee is not compromised.
(4) The patient may be able to ambulate out on own with a crutch and assistance.

L. Dislocations
1. Considerations for reducing a dislocated joint in the wilderness:
 a) Reductions are typically easier immediately after an injury, before the joint has become swollen and muscles are in spasm.
 b) Extrication of a patient from the wilderness with a dislocated joint can be quite difficult, presenting increased risks to the patient and the rescuers.
 c) Dislocated joints can result in compromise to vascular and/or neurological structures.
2. Always check neurological and vascular integrity before and after an attempted reduction.
3. Consider placing a diaper on the patient for control of urine—especially for dislocations of the lower extremities that may prevent the patient from being able to urinate unaided.
4. Specific reductions are as follows:
 a) Shoulder
 (1) The greater majority of shoulder dislocations are anterior. Mechanism is typically external rotation and abduction. The patient will complain of pain in the shoulder and will be resistant to bringing the arm into a position of rest across the body.
 (2) Check for motor and vascular integrity in the hand.
 (3) Also check for sensation in the outer aspect of the shoulder.
 (4) Reduction technique
 External Rotation
 (a) Lie the patient supine on a flat surface.
 (b) Secure the patient’s affected arm adducted to the patient’s side.
 (c) The elbow should be flexed to 90 degrees.
 (d) Hold the patient’s wrist and gently guide the arm into a slow external rotation while holding the upper arm fixed to the patient’s side.
 (e) Whenever the patient experiences pain, halt the procedure momentarily then continue.
 (f) Continue guiding the forearm until it is lying perpendicular to the patient’s side on the flat surface.
 (5) Place the patient in a sling and swath.
 b) Fingers
 (1) Clinically diagnosed by obvious deformity and loss of function
 (2) Reduction technique
 (a) Maintain digit in partial flexion.
 (b) Apply traction to the flexed digit while pushing the base of the phalanx back into place.
 (3) Splint the fingers in an anatomic position with a roller gauze splint.
 c) Hip
(1) Hip dislocations tend to be posterior. The patient’s hip will be internally rotated and adducted. You may also notice the affected limb to appear shorter than the other limb.

(2) If equipped with ALS medications, pretreat with midazolam 5 mg IM. Alternatively pre-medicate with an oral analgesic.

(3) Reduction technique
 (a) The patient should be lying supine flat on the ground.
 (b) Flex the hip and knee to 90 degrees.
 (c) Straddle the patient and apply traction in an upward direction while another clinician is providing counter traction by holding the pelvis fixed to the ground.

(4) Once reduced, the hip should be immobilized to the uninjured leg and the patient carried out on a stretcher.

d) Knee
 (1) Knee dislocations carry great risk of injury to the popliteal artery behind the knee.
 (2) Assess for pulses in the foot.
 (3) Reduction technique
 Gently exaggerate the injury and then apply gentle traction to bring the joint to anatomic position.
 (4) Splint the knee slightly flexed and carry the patient out.
 (5) Expedite transport to a trauma center.

e) Patella
 (1) The patella will typically displace laterally with the knee held flexed by the patient for comfort.
 (2) Reduction technique
 (a) Gently extend the knee so that the lower leg is straight to the upper leg.
 This movement may result in the reduction of the dislocated patella.
 (b) If the patella remains dislocated after extension of the knee, then apply gentle pressure on the lateral edge of the patella pushing the patella back into its anatomic location. Do not force the patella if it is not easily reducible.
 (3) Splint the leg in extension.
 (4) The patient may be able to ambulate with a crutch and assistance.

f) Ankle
 (1) Ankle dislocations are typically associated with fractures.
 (2) There will be obvious deformity.
 (3) There may be compromise of vascular structures.
 (4) Reduction technique
 Apply gentle traction to place the ankle back into its anatomic location.
 (5) The ankle will likely remain unstable after reduction and may easily dislocate without splinting. Therefore, be prepared to splint the ankle immediately after reduction. Have one clinician maintain the reduction, while another clinician applies a splint.
 (6) Carry the patient out of the wilderness.
M. Ankle sprain
1. An ankle sprain typically is described by the patient as twisting of the ankle after walking or tripping over a ledge. The patient will often be able to ambulate on the ankle with assistance. There should be no instability to the ankle.

2. Management
 a) Support the ankle with an ACE wrap or other supportive device.
 b) Provide a walking aid for the patient such as a crutch or walking stick.
 c) Assist the patient in ambulating out of the wilderness.

N. Foot Care – Blister management
1. Blisters typically develop from a hiker wearing a shoe that has not been broken in and/or is not fitted properly. Wearing two pairs of socks often helps to prevent blisters.

2. Management
 a) Cover the blister with mole-skin or mole foam.
 b) In most cases you should NOT open the blister, as this increases the risk of infection.
 c) You may open the blister with a scalpel or clean knife if the location of the blister is impeding the ability for the patient to self-extricate from the wilderness. Cut in the lines of the skin, drain the fluid, and then cover with antibiotic ointment and a sterile dressing.
 d) Assist the patient in ambulating out of the wilderness.

O. Eye
1. Non-painful acute loss of vision
 a) Patients with acute non-painful loss of vision may have occlusion of the artery to the eye or vasculitis of the artery.
 b) If available, administer oxygen at high flow.

ALS SKILL
 c) Administer aspirin 325 mg po (adults only).

ALL CLINICIANS
 d) Expedite transport to the ophthalmology referral center.

2. Globe rupture
 a) Rupture of the eye globe may be obvious or occult.
 b) Obvious globe rupture will be diagnosed by bleeding from the orbit and irregularly shaped orbit and/or pupil that is not reactive to light.
 c) Cover the affected eye with eye dressing, being careful not to put pressure on the globe, and expedite transport to the ophthalmology referral center.

3. Red Eye
 a) Differential diagnosis of red eye includes:
 (1) Foreign body
 (2) Infection—either bacterial or viral
 (3) Allergic reaction
 (4) Globe rupture
 (5) Acute angle closure glaucoma
b) Cover eye and expedite transport to ophthalmology referral center.

4. Foreign body in eye
 a) If the clinician is sure that the patient’s discomfort is due to a foreign body, the clinician may attempt to remove the foreign body.

ALS SKILL
 b) Numb the eye with 2 drops tetracaine 0.5% ophthalmic solution (peds and adults).

ALL CLINICIANS
 c) Evert the eyelid.
 d) Remove any foreign particles with a moist cotton applicator or equivalent.
 e) DO NOT FORCEFULLY REMOVE PARTICLES STUCK TO THE EYE.
 f) Irrigate the eye with water clean enough to drink.

P. Nose - Epistaxis
 1. Control bleeding by pinching nose until bleeding stops.
 2. If unable to control bleeding, pack.

ALS SKILL
 3. If you anticipate the packing to be in for greater than 24 hours, initiate antibiotic prophylaxis with either Augmentin® or Bactrim®.

ALL CLINICIANS
 4. Transport out of wilderness.

Q. Teeth
 1. Fractured tooth
 a) A fractured tooth that is bleeding is a dental emergency.
 b) The exposed nerve roots will typically be quite painful.
 c) Place a small piece of aspirin on the top of the exposed nerve roots. This will initially be painful to the patient, but the pain should quickly decrease and then be followed by significant relief of pain. You can also cover the exposed nerve roots with sugarless gum or wax.
 d) Have patient cover tooth with gauze.
 e) Transport out of wilderness.
 2. Tooth avulsion
 a) Pick the tooth up by the top rather than the root.
 b) Irrigate tooth and socket gently with water clean enough to drink.
 c) DO NOT SCRUB THE TOOTH.
 d) Replace tooth in socket and have patient maintain tooth by keeping mouth closed as much as possible. You may fix the tooth in place with a piece of sugarless gum.
 e) Alternatively place tooth inside of cheek ensuring that the patient does not aspirate or swallow the tooth.
 f) If traveling in difficult terrain, it is acceptable to place tooth in container with clear liquid.

R. Burns
 1. Clean burns with water clean enough to drink and gentle scrubbing as needed to
2. If you expect to get the patient to a burn center within 24 hours, do not cover with antibiotic ointment. If transport to a burn center is expected to exceed 24 hours, then cover with antibiotic ointment.

3. Cover burn with sterile dressing.

 ALS SKILL
4. Treat pain
 a) Ibuprofen 600 mg po every 6 hours; 10 mg/kg
 b) Acetaminophen 3–5 yrs old 160 mg/5mL; 6–9 yrs old 320 mg/10mL; greater than 9 yrs old 640 mg/20mL or 650 mg po tab. May repeat dose every 6 hours as needed.
 c) Oxycodone 5–10 mg every 6 hours as needed
 d) For pediatrics administer 0.1 mg/kg of oxycodone every 6 hours as needed.
 e) Morphine 0.1 mg/kg IV/IM to max dose 20 mg with repeat dose of 0.05 mg/kg to max dose of 10 mg every 1 hour as needed
 f) Administer fentanyl 1 mcg/kg IN/IV/IM to a max dose of 200 mcg with a repeat dose of 1 mcg/kg to a max dose of 200 mcg every 1 hour as needed.

 ALL CLINICIANS
5. Transport to burn center if meeting burn center criteria (see Burn Protocol in MIEMSS treatment protocols).

 S. Anaphylaxis
1. Severe allergic reactions present with diffuse hives, airway swelling, and signs of hypoperfusion.
2. Goals of treatment are to counteract the effects on the airway, respiratory system, and cardiovascular system.
3. Specific treatment
 a) Epinephrine (manual or auto-injector)
 (1) Less than 30 kg estimated weight, administer 0.15 mg IM
 (2) Greater than 30 kg estimated weight and adults, administer 0.5 mg IM
 b) Albuterol MDI 2 puffs may repeat every 5 minutes as needed

 ALS SKILL
 c) Benadryl®: Pediatric 1 mg/kg every 6 hours; Adults 25–50 mg every 8 hours
 d) Dexamethasone: Pediatric 0.5 mg/kg; Adults 10 mg po

 ALL CLINICIANS
4. Expedite transport out of the wilderness.

 T. Hypothermia
1. Hypothermia occurs when the body’s ability to conserve and generate heat is not able to compensate for loss of heat.
2. The conditions that are most favorable for development of hypothermia mirror the most efficient methods for losing heat—wet and windy conditions. Therefore, temperatures just above freezing are often more favorable for the development of hypothermia than temperatures below freezing.
3. The beginning stages of hypothermia are clinically evident when a patient is cold and shivering. During this stage the patient will be able to re-warm themselves with passive warming techniques.
a) Remove the patient from the wet and windy conditions.

b) Remove any wet clothes.

c) Place the patient in sleeping bags or cover the patient with blankets (foil safety blankets work well). Another option is to place the patient’s body into garbage bags, ensuring that the head is not covered with the bag.

4. The point at which the patient is no longer shivering marks the beginning of severe hypothermia. If the patient is not shivering, the patient will not be able to self-generate heat. Also during this stage the patient may develop confusion and other neurological findings. Treatment will need to be active replacement of heat. Follow the steps in #3 above. In addition, add heat to the patient. Possible methods for adding heat include:
 a) Have another person join the patient in a sleeping bag or under blankets.
 b) Pack the patient’s axilla and groin with warm packs or water bottles filled with warm liquids.

5. Profound hypothermia is marked by cardiac instability progressing to arrhythmias—ventricular fibrillation, severe bradycardias, and asystole. Handle the patient carefully so as to not induce ventricular fibrillation, but nevertheless remove the patient from the environment. If suspicious of cardiac arrest, check for a pulse for at least 30 seconds. If the patient is in cardiac arrest, attempt to warm the patient while performing CPR. Continue CPR until the patient is warm, he or she is transferred to the transporting EMS agency, or the rescuers are fatigued.

6. If the patient is alert and there is no concern for airway compromise, feed the patient per the nutrition guidelines. The treatment of hypothermia is aided by the patient having fuel to self-generate heat.

U. Frostbite

1. Frostbite is a localized tissue injury from freezing of tissue. Whereas hypothermia can occur in temperatures above freezing, tissue will not freeze unless temperatures are below freezing.

2. The beginning stages of frostbite are marked by periods of intermittent pain and swelling of the affected tissue. This period is actually called “frostnip” and does not require intervention other than removing the affected tissue from the cold environment.

3. Once the tissue is frostbitten the skin will be pale, cold, and numb. Underlying tissue may be soft and pliable or firm depending on the depth of the freezing.

4. Treatment should only be initiated if the clinician is confident that there is no chance of the affected tissue refreezing. If the tissue is likely to continue to be exposed to a cold environment prior to the patient reaching definitive care, then the affected tissue should, as much as possible, be protected from the environment and covered with warm clothes and/or sterile dressing.

5. If the clinician is reasonably sure the tissue will not be further exposed to the cold, then active treatment may be initiated.
 a) Actively warm the affected tissue in warm water that has been measured with a thermometer to a temperature of 100.4–104 degrees Fahrenheit.

ALS SKILL

b) Give ibuprofen 600 mg po every 6 hours for management of the frostbite (Peds
dosing 10 mg/kg up to max of 600 mg).

c) Manage pain as needed—see pain management section HH.

ALL CLINICIANS

6. Transport the patient to definitive care.

V. Heat Exhaustion

1. Heat exhaustion is marked by intravascular volume depletion due to dehydration and excessive sweating in a hot environment.

2. Symptom include dizziness, excessive sweating, headache, confusion, nausea, and weakness.

3. Treatment
 a) Remove the patient from the hot environment and keep in the shade.
 b) Cool the patient by getting the patient wet and fanning.
 c) Replace fluids.

4. Transport out of the wilderness.

W. Heat Stroke

1. Heat stroke is a true environmental emergency marked by injury to the neurological system as a result of excessive heat.

2. The patient may or may not be sweaty.

3. Symptoms include confusion, ataxia, and tachycardia.

4. Skin will be red and hot.

5. Treatment mirrors that for heat exhaustion.
 a) Remove patient from the hot environment and keep in the shade.
 b) Cool patient with water and fanning.
 c) Place ice packs in axilla and groin; if shivering, remove the ice packs.
 d) If the patient is alert, orally replace fluids.

X. Snake Bites

1. There are two wild snakes indigenous to the State of Maryland that are poisonous:
 a) Northern Copperhead – The Northern Copperhead is identified by the coppery color to its head and the alternating tan and dark brown on its body. It likes to hide within woodpiles or under logs.
 b) Timber Rattlesnake – The Timber Rattlesnake is a large, stout-bodied snake that can grow up to 5 feet or more. It is typically identified by bands of dark chevrons on its back. Generally, the snake likes to live in wooded areas, but gravid females may be found sunning on open rocks.

2. Snake bites may or may not present with paired fang puncture wounds. A snake bite may also present with a single puncture wound or just a scratch.

3. The greater majority of bites will present with immediate onset of pain at the site of the bite. The bite will become swollen and erythematous.

4. Mark the site of erythema and monitor its progression.

5. Treatment
 a) Gently clean the area and cover with a sterile dressing.
 b) Do NOT attempt to suck out the venom with a commercial or improvised device.
 c) Do not apply a distal and proximal constricting band for poisonous snakebite to an extremity. Splint the extremity. Remove any jewelry on affected extremity.
 d) As much as possible keep the affected area below the level of the heart.
e) Unless absolutely necessary, the patient should be carried out rather than walked out on their own accord.

f) Calmly expedite transport out of the wilderness.

6. Do NOT try to catch the snake for identification purposes.

Y. Tick Bites

1. Tick bites in the State of Maryland are at high risk for transmission of Lyme disease and/or Rocky Mountain spotted fever.

2. In order for a tick to transmit Lyme, the tick has to be attached to the patient for at least 36 hours. Ticks found on a patient that are engorged with blood pose a much higher risk than ticks that are not engorged with blood.

3. Lyme disease presents with a circular red rash with the center clear of redness. Patients will have fevers and non-specific flu-like symptoms. The patient may also have neurological finding such as a facial droop.

4. To remove a tick, directly pull the tick up from the skin using a pair of tweezers or a tick key in a single firm steady pull.

ALS SKILL

5. If there is high suspicion for Lyme, start the patient on antibiotic treatment with doxycycline 100 mg twice a day; 2.2 mg/kg 8 years or greater. If less than 8 years old use Augmentin® 10 mg/kg every 12 hours.

6. If there is suspicion for Rocky Mountain spotted fever (the patient has fever and petechiae), then doxycycline is the antibiotic of choice for all age groups. If less than 45 kg estimated weight, administer 2.2 mg/kg every 12 hours to max dose of 100 mg. If greater than 45 kg then administer 100 mg every 12 hours.

Z. Large Animal Attacks (e.g., bear, wild cat, fox)

1. Ensure that the area is safe and that the animal is not still a threat to the patient or rescuers.

2. Patients typically die from large animal attacks secondary to injury to airway structures or hemorrhagic shock from large, gaping wounds.

3. Ensure the patient has an intact airway.

4. Control for any external bleeding.

5. Clean and dress wounds.

6. Transport out of the wilderness.

7. Do NOT attempt to capture the animal for identification purposes.

AA. Plants

1. Patients may develop localized skin reactions after contact with a plant.
 a) Remove the patient from the plant.
 b) Wash the area clean.

ALS SKILL

 c) For mild reactions, use a topical steroid. Cover the area with betamethasone valerate 0.1% ointment twice a day.

 d) For severe reactions administer dexamethasone 10 mg po; 0.5 mg/kg for pediatrics.

 e) Transport

2. Ingestion of plants and mushrooms can be life-threatening.
a) Patients will present with nausea and vomiting.
b) Provide supportive care.
c) Transport

BB. Oral Rehydration
1. Oral rehydration with a glucose-sodium solution may be indicated in one of three conditions.
 a) Excessive sweat loss from intense exercise
 b) Mild to moderate heat illness, or severe heat illness as long as the airway is intact and the patient is able to tolerate oral fluids
 c) Dehydration from diarrhea
2. The patient will likely feel dehydrated. Mucus membranes will be dry. Skin may tent.
3. Replacement of fluids with only water and no electrolytes may lead to a dilution of intravascular sodium levels. This risks the development of cerebral edema. Therefore, fluids should be replaced with a solution of glucose and salts.
4. The ideal solution will contain 2–6% glucose and 30 mEq/Liter of sodium. Commercial sports drinks generally contain about 6% glucose and 25 mEq/Liter of sodium. While commercial sports drinks contain more than the ideal amount of glucose and less than the ideal amount of sodium, these solutions are better than just water.
5. If a glucose/sodium solution is not available, hydrate with water judiciously.
6. Replace fluids at a rate of 50–100 mL/kg over the first 4–6 hours.

CC. Nutrition
1. In rescues that are expected to be prolonged (i.e., greater than 4 hours) it may be necessary to provide nutritional support to the patient.
 a) Ensure that the patient has an intact airway and that the patient is not experiencing nausea or vomiting.
 b) Only feed the patient if you are reasonably sure that the patient will not be going to surgery in the next 12 hours.
 c) Provide nutrition with a combination of protein and carbohydrate.
 (1) Energy bars are a good choice.
 (2) A mixture of dried fruits and nuts is also a good choice.

DD. Nausea
1. Patients with traumatic injuries and/or medical illness may experience nausea. All clinicians should refer to the treatment protocols for ODT ondansetron.

ALS SKILL
2. If carrying ALS medications and IVs, follow Nausea and Vomiting Protocol in MIEMSS treatment protocols.
3. Alternatively, may administer
 a) Promethazine pediatric greater than 2 years old 0.5 mg/kg every 12 hours; adults 25 mg po every eight hours
 b) Zofran® pediatric 0.1 mg/kg; adults 4 mg IM
EE. Diarrhea
1. Diarrhea in the wilderness can result in significant dehydration to the patient.
2. Orally rehydrate the patient.

ALS SKILL
3. Administer loperamide
4. Pediatric – (loperamide is generally not indicated for pediatric populations. However, in the wilderness it may be needed to prevent profound dehydration or to facilitate extrication. Use judiciously.)
 5. 2–6 years of age or 13–20 kg 1 mg po three times a day
 6. 6–8 years of age or 20–30 kg 2 mg bid
 7. Adults–4 mg po for the first dose then 2 mg po after each subsequent loose stool up to a total of 16 mg in a 24 hour period
8. Contraindications for loperamide are diarrhea with fevers and bloody diarrhea.

FF. Abdominal Pain
1. Non-traumatic abdominal pain may indicate a surgical emergency.
2. In women, a ruptured ectopic pregnancy is a true emergency that may present with abdominal pain.
 a) Check a female patient’s urine for beta hCG using a commercial urine pregnancy test.
 b) If the patient with abdominal pain is pregnant, expedite transport.
3. In non-pregnant females and all males with abdominal pain, monitor vital signs and patient symptoms. Concerning findings suggestive of a surgical abdomen include:
 a) Instability of vital signs
 b) Progressing pain
 c) Rebound pain–pain with movement
 d) Nausea and vomiting
4. If there is high concern for surgical abdomen, do not feed the patient and expedite transport.
5. All other patients with abdominal pain should be transported so as to not miss occult surgical disease.

GG. Gastroesophageal reflux
1. Gastroesophageal reflux (GERD) (or heartburn) is typically identified by the patient complaining of a burning, substernal chest pain. The patient also may complain of having a sour taste.
2. It is important to note that the patient with symptoms of GERD may actually have an acute coronary syndrome. Therefore, as you are treating the patient’s symptoms, also assess for possible acute coronary syndrome and manage appropriately. Relief of symptoms with the recommended treatment for GERD does NOT rule out the possibility of acute coronary syndrome.
3. Management of GERD
 Turns 1–2 chewed every hour as needed to a max dose of 4 tablets
HH. Pain Management

1. Treatment of pain in the wilderness may at times be necessary in order to facilitate extrication and transport out of the wilderness. Therefore, treatment of pain not only benefits the patient by simply decreasing pain, treatment of pain also improves the safety of the patient and rescuers by decreasing the time spent in the wilderness.

2. Mild to moderate pain can be treated with ibuprofen and/or acetaminophen.
 a) Ibuprofen 600 mg every 6 hours orally; 10 mg/kg to max dose 600 mg for pediatric dosing
 b) acetaminophen up to 650 mg every 6 hours orally; 160 mg/5mL for 3–5 years old; 320 mg/10 mL 6–9 years old

ALS SKILL

3. Management of severe pain will often require treatment with an opiate analgesic. While intravenous opiates may have a quicker onset and more easily titratable, oral opiate analgesics tend to have less acute respiratory depression.
 a) If carrying parenteral morphine, administer 0.1 mg/kg IV/IM up to 20 mg IM. May repeat dose of 0.05 mg/kg every hour as needed.
 b) Administer fentanyl 1 mcg/kg IN/IV/IM to a max dose of 200 mcg with a repeat dose of 1 mcg/kg to a max dose of 200 mcg every 1 hour as needed.
 c) Alternatively, administer oxycodone 5–10 mg every 6 hours as needed. Pediatric dosing for oxycodone – 0.1 mg/kg every 6 hours

FORMULARY

acetaminophen (Tylenol®)

- Availability: 325 mg tablet; 160 mg/5 mL
- Action: analgesic; anti-pyretic
- Indication: mild to moderate pain; fever
- Contraindication: known end stage liver disease
- Precautions
- Side effects
- Dose: 3–5 years old 160 mg/5 mL every 6 hours as needed
 6–9 years old 320 mg/10 mL every 6 hours as needed
 10 years and above 640 mg/20 mL or 650 mg tab every 6 hours as needed

albuterol

- Availability: 90 mcg/metered spray
- Action: bronchodilator
- Indication: shortness of breath; exacerbation of asthma/
COPD; wheezing

- Contraindication
- Precautions
- Side effects
- Dose (Peds & Adult) start with 2 puffs every four hours as needed; may use up to 4 puffs every hour

amoxicillin-clavulanate (Augmentin®)
- Availability 500 mg–125 mg tablet; 125 mg–31.5 mg/5 mL
- Action antibiotic
- Indication suspected respiratory infection
- Contraindication hypersensitivity to penicillin
- Precautions
- Side effects diarrhea
- Dose Pediatrics – 10 mg/kg every 12 hours
 Adult - 1 tablet every 8 hours

Aspirin
- Availability 325 mg; 81 mg
- Action anti-platelet
- Indication suspected acute coronary syndrome or stroke
- Contraindication hypersensitivity to salicylates
- Precautions
- Side effects
- Dose No pediatric dosing
 Adults - one 325 mg tab po qd or four 81 mg tabs po qd

bacitracin
- Availability 1 ounce (28 gram) ointment tube
- Action topical antibiotic
- Indication soft tissue wounds
- Contraindication
- Precaution
- Side effects
- Dose (Peds and Adult) cover the affected area 2–3 times a day

betamethasone valerate
- Availability 0.1% topical ointment
- Action topical steroid anti-inflammatory
- Indication contact dermatitis
- Contraindication
- Precautions
- Side effects
- Dose (Peds and Adult) apply to affected area twice a day

calcium carbonate (Tums®)
- Availability 500 mg; 750 mg chewable
- Action neutralizes stomach acid
- Indication: upset stomach; gastroesophageal reflux
- Contraindication:
- Precautions:
- Side effects:
- Dose: Pediatric – 1 every four hours as needed
 Adult – 1–2 every hour as needed up to max dose of 8 tabs

cephalexin (Keflex®)
- Availability: 500 mg tablets; 125 mg/5mL
- Action: antibiotic
- Indication: suspected skin infection or prophylaxis for skin wound
- Contraindication: hypersensitivity to penicillin
- Precautions:
- Side effects: diarrhea
- Dose: Pediatric – 10 mg/kg every 6 hours
 Adult – 500 mg every 6 hours

chitosan (Hemcon®)
- Availability: 2"X2"; 2"X4"; 4"X4" bandages
- Action: hemostatic
- Indication: severe bleeding
- Contraindication:
- Precautions:
- Side effects:
- Dose (Peds and Adult): apply to severe bleeding as needed

ciprofloxacin (Cipro®)
- Availability: 500 mg tablets
- Action: antibacterial
- Indication: suspected urinary tract infection; skin infection if patient is hypersensitive to penicillin
- Contraindication: hypersensitivity to floroquinolone
- Precautions:
- Side effects:
- Dose: no pediatric dosing
 Adult – 500 mg every 12 hours

cloxacillin (Cleocin®)
- Availability: 150 or 300 mg/tablet, reconstituted liquid 75 mg/5 mL
- Action: antibiotic
- Indication: suspected pharyngitis or respiratory infection; cellulitis
- Contraindication: hypersensitivity to clindamycin
- Precautions:
- Side effects: diarrhea
- Dose: Pediatrics– 10mg/kg every 8 hours
 Adult -300mg every 8 hours

cryanoacrylate tissue adhesive (Dermabond®)
- Availability: single use ampoules
- Action: tissue adhesive
<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Contraindication</th>
<th>Precaution</th>
<th>Side effects</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethasone (Decadron<sup>®</sup>)</td>
<td>Minor wound repair</td>
<td>Known hypersensitivity</td>
<td>Avoid near eyes</td>
<td>Transient local discomfort</td>
<td>As required for wound closure; may need 2–4 layers</td>
</tr>
<tr>
<td>Diphendramamine (Benadryl<sup>®</sup>)</td>
<td>Steroidal anti-inflammatory</td>
<td>Asthma, allergic reactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxycycline (Doxy<sup>®</sup>)</td>
<td>Antibacterial</td>
<td>Suspected respiratory infection with contraindication to Augmentin<sup>®</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epinephrine auto-injector*</td>
<td>Antihistamine; anti-inflammatory; vasoconstrictor</td>
<td>Moderate to severe allergic reaction</td>
<td></td>
<td>Tachycardia; hypertension</td>
<td></td>
</tr>
</tbody>
</table>
• Dose

Pediatric less than 30 kg estimated weight – 0.15 mg IM
greater than 30 kg estimated weight and adults – 0.3 mg IM

* All levels of clinicians shall be authorized to manually draw up epinephrine with a needle
and syringe from an ampule or vial after education and credentialing by the wilderness juris-
dictional medical director.

Fentanyl

• Availability
 prefilled syringe, multidose vial

• Action
 opioid analgesic

• Indication
 severe pain

• Contraindication

• Precautions

• Side effects
depressed level of consciousness; hypoxia; hypotension

• Dose

1 mcg/kg IN/IV/IM to a max dose of 200 mcg with a repeat
dose of 1 mcg/kg to a max dose of 200 mcg every 1 hour
as needed

Glucagon

• Availability
 1 mg injector

• Action
 facilitates release of glucose from glycogen stores in the
 liver

• Indication
 suspected hypoglycemia in patient that is not able to take
 oral glucose

• Contraindication

• Precautions

• Side effects

• Dose

Pediatric less than 25 kg – 0.5 mg IM
greater than 25 mg and adults – 1 mg IM

Glucose gel (Glutose 15®)

• Availability
 15 grams oral gel

• Action
 raises blood glucose levels

• Indication
 suspected hypoglycemia

• Contraindication

• Precautions
 use caution in patient with depressed level of consciousness

• Side effects

• Dose (Peds and Adult)
give to patient by mouth
in patient with depressed level of consciousness,
rub the gel on the patient’s gums, but use caution

Hemostatic agent

All levels of clinicians are authorized to use gauze impregnated with hemostatic agent.

Ibuprofen (Advil®, Motrin®)

• Availability
 200 mg; 400 mg; 600 mg; 40 mg/mL

• Action
 anti-inflammatory; analgesic

• Indication
 mild to moderate pain

• Contraindication
 hypersensitivity; known renal disease; history of GI
bleeding

- Precautions
- Side effects
- Dose
 - Pediatric – 10 mg/kg to max dose 600 mg every 6 hours as needed
 - Adult – 200 mg–600 mg every 6 hours as needed

Iloperamide (Imodium®)
- Availability
 - 2 mg tablets
- Action
 - anti-diarrheal
- Indication
 - diarrhea
- Precautions
- Side effects
 - constipation
- Dose
 - Pediatric – 2 mg after first watery stool, then 1 mg after each subsequent watery stool; max dose 8 mg per day
 - Adult – 4 mg after first watery stool; then administer 2 mg after each subsequent watery stool; max dose 16 mg per day

Metaclopramide (Reglan®)
- Availability
 - 10 mg tablets; 5 mg/mL
- Action
 - anti-emetic
- Indication
 - nausea and vomiting
- Precautions
- Side effects
- Dose
 - Pediatric – 0.1 mg/kg every 8 hours as needed
 - Adult – 10 mg every 8 hours as needed

Morphine
- Availability
 - 4 mg carpuject
- Action
 - opiate analgesic
- Indication
 - severe pain
- Precautions
- Side effects
 - depressed level of consciousness; hypoxia; hypotension
- Dose
 - Pediatric – 0.1 mg/kg IM every hour as needed
 - Adult – 4 mg IM every hour as needed

Ondansetron (Zofran®)
- Availability
 - 4 mg injectable solution
- Action
 - anti-emetic
- Indication
 - severe nausea and vomiting
• Dose
 Pediatric – 0.1 mg/kg IM every 1 hour as needed up to max dose 16 mg per day
 Adult – 4 mg IM every 1 hour as needed up to max dose of 32 mg per day

oxycodone
• Availability 5 mg tablet
• Action opiate analgesic
• Indication moderate to severe pain
• Contraindication
• Precautions
• Side effects depressed level of consciousness
• Dose
 Pediatric – 0.05–0.15 mg/kg every 6 hours
 Adult – 1–2 tablets by mouth every 4 hours as needed

promethazine (Phenergan®)
• Availability 25 mg tablets; 6.25/5 mL
• Action anti-emetic
• Indication mild to moderate nausea
• Contraindication
• Precautions
• Side effects
• Dose
 Pediatric – 0.5 mg/kg every 8 hours as needed
 Adult – 25 mg every 8 hours by mouth as needed

tetracaine
• Availability 0.5% ophthalmic solution
• Action topical anesthetic
• Indication severe eye pain; foreign body removal from the eye
• Contraindication hypersensitivity
• Precautions
• Side effects
• Dose (Peds and Adult) 2 drops to the affected eye

trimethoprim/sulfamethoxazole (Bactrim®)
• Availability 160 mg TMP/800 mg SMX (DS tab); 40 mg/200 mg/5 mL
• Action antibiotic
• Indication sinus infection, upper respiratory infection, urinary tract infection
• Contraindication hypersensitivity to sulfa
• Precautions
• Side effects
• Dose
 Pediatric – 5 mg/kg TMP every 12 hours
 Adult – 1 DS tab po bid
VI. RESEARCH PROTOCOLS
A. LAMS Stroke Research Protocol

EMS STROKE ALGORITHM

Support ABCs and provide any needed BLS/ALS Interventions
Check Glucose

Determine presence of stroke severity using Posterior Cerebellar assessment and Cincinnati Prehospital Stroke Scale

Either test positive for stroke

NO → Treat and transport per pt presentation

Determine time patient last known well LAMS Assessment

Signs and symptoms consistent with stroke AND onset less than 20 hrs.

NO → Transport to closest Stroke Center (a)

LAMS 4 or greater?

NO → Transport to closest COMPREHENSIVE Stroke Center if within 30 minutes as Priority 1 and Stroke Alert

YES

(a) - Designated Acute Stroke Ready, Primary, or Comprehensive Stroke Center
1. Inclusion Criteria
 Patient may present with numbness or weakness (often on one side only), difficulty speaking, sudden onset of dizziness or loss of balance, blurred vision (including intermittent loss of vision in one or both eyes, which may have resolved upon arrival of EMS), or a severe, unexplained headache. May be accompanied by seizures or altered mental status.

2. Treatment
 a) Position patient with head elevated at 30 degrees.
 b) If the patient has a positive Posterior Cerebellar Assessment OR Cincinnati Stroke Scale AND can be delivered to the hospital within 20 hours* of when patient was last known well, transport the patient to the closest Designated Acute Stroke Ready, Primary, or Comprehensive Stroke Center. If this adult patient also has a LAMS score of 4 or greater, they are to be transported to a Comprehensive Stroke Center or the endovascular capable Sinai Hospital. If there is not one within 30 minutes, then go to the closest Designated Acute Stroke Ready or Primary Stroke Center if within 30 minutes.

The Cincinnati Prehospital Stroke Scale
(Kothari R, et al. Acad Emerg Med 1997; 4:9866-990.)

Facial Droop (have patient show teeth or smile):
- Normal – both sides of face move equally
- Abnormal – one side of face does not move as well as the other side

Arm Drift (patient closes eyes and holds both arms straight out for 10 seconds):
- Normal – both arms move the same or both arms do not move at all (other findings, such as strength of grip, may be helpful)
- Abnormal – one arm does not move or one arm drifts down compared with the other

Abnormal Speech (have the patient say “you can’t teach an old dog new tricks”):
- Normal – patient uses correct words with no slurring
- Abnormal – patient slurs words, uses the wrong words, or is unable to speak

Posterior Cerebellar assessment: Balance and Eyes: patient complains of sudden onset of loss of balance or dizziness, or has sudden vision loss (including intermittent loss of or blurred vision) indicates a stroke affecting the posterior cerebellar circulation.

If Posterior Cerebellar assessment OR Cincinnati Prehospital Stroke Scale is positive, perform the Los Angeles Motor Scale (LAMS). Relay LAMS score to the receiving hospital during Stroke Alert notification.

CLINICIANS SHOULD OBTAIN AND DOCUMENT A CONTACT TELEPHONE NUMBER FOR ONE OR MORE INDIVIDUALS WHO HAVE DETAILS ABOUT THE PATIENT’S MEDICAL HISTORY SO THAT THE PHYSICIAN MAY OBTAIN AND VALIDATE ADDITIONAL PATIENT INFORMATION.

WHILE STROKES DURING PREGNANCY OR SHORTLY AFTER GIVING BIRTH ARE RARE, THERE HAS BEEN A SIGNIFICANT RISE REPORTED IN THE LITERATURE. MOTHERS-TO-BE AND POSTPARTUM MOTHERS HAVE AN INCREASED RISK.

c) Use glucometer and treat if glucose less than 70 mg/dl.
d) Establish IV access with LR.
e) If the patient is hypotensive, obtain medical consultation.
f) Consider obtaining blood sample using closed system.
g) Do not treat hypertension in the field.
B. PEDIATRIC DESTINATION DECISION TREE (PDTree)

1. PURPOSE
This evidence-based decision support tool is designed to assist clinicians in choosing the facility type most likely to deliver definitive care for pediatric patients requiring transport. This represents an ideal destination choice. Destination selection for any individual patient will include other factors, including transport time, unit availability, and patient/family requests.

2. INDICATIONS
Current Maryland Medical Protocols for Emergency Medical Services (MMP) should take precedence. The PDTree should be applied to patients considered “pediatric” ages by the MMP. For medical pediatric patients, this is birth up to the 18th birthday. For trauma patients, the PDTree may be used for patients from birth up to the 15th birthday. For this research protocol, both trauma and medical pediatric patients will be called “child.”

3. CONTRAINDICATIONS
a) Pregnant patients
b) Newly born infants should be transported (with their mother) to the closest appropriate facility able to receive the post-partum mother.

4. DEFINITIONS
a) Pediatric Base Stations currently designated by MIEMSS include Johns Hopkins Hospital Children's Center and Children's National Medical Center. These Pediatric Base Stations may be consulted at any time by any Maryland EMS clinician for online medical direction and assistance with destination decision-making.
b) Specialty or Trauma Center is defined by current MIEMSS facility designations for Trauma, Eye, Burn, and Pediatric Specialty Centers.
c) Medical Home is defined as the ED/hospital where the patient has their medical records and has established care by specific physicians to address the patient’s unique needs. Existing MMP suggests that EMS clinicians should transport (repatriate) the patient to that hospital as long as that hospital is not more than 15 additional minutes further than nearest hospital (or greater if allowed for by the EMS Operational Program).
d) Comprehensive Pediatric Center is defined as a hospital ED with pediatric ICU on-site.
e) Regional Pediatric Care Center is defined as a hospital ED with inpatient pediatric services and/or a designated pediatric ED staffed by pediatric specialty trained physicians 24/7 or a Freestanding Emergency Medical Facility (FEMF) with designated pediatric ED staffed by pediatric specialty trained physicians 24/7.
f) Nearest Appropriate Facility is defined as the closest hospital ED or FEMF that is available as an EMS transport destination.
g) Feasibility of transport to the suggested destination type is left to the discretion of the EMS Operational Program.

5. PEDIATRIC DESTINATION DECISION TREE (See page 489)

Children who are in cardiac arrest, or if a patent airway cannot be established, must be transported to the nearest appropriate hospital-based emergency department or designated freestanding emergency medical facility.
EMS OPERATIONAL PROGRAM RESEARCH PROTOCOL
PEDIATRIC DESTINATION DECISION TREE (PDTree)

PD Tree

Closest ED/FEMF

- Cardiac Arrest
- Unable to Establish a Patent Airway
- Patient in Need of Specialty Care but Prolonged Transport Time

YES

Transport patient to nearest hospital or FEMF; consider consultation with pediatric base station

NO

Consider Specialty or Trauma Center Needs

Specialty Center Criteria
- Cardiac arrest with ROSC
- Stroke patient under age 18
- Eye injury
- Hand injuries meeting criteria
- Burns meeting burn center criteria

Trauma Center Criteria
- Trauma categories A, B, C, D
- Suspected neck injury with paresthesia, weakness, or other neurologic deficits

YES

Transport patient to trauma or specialty center based on protocol; alert trauma team; consider aviation if quicker and of clinical benefit

NO

Consider Need for Transport to Child’s Medical Home

- Does the child have an emergency related to a known condition previously treated at a specific facility?

YES

If feasible, transport patient to their medical home

NO

Consider Need for Comprehensive Care

Medical
- Child ≤ 2 yr Altered Mental Status and no known seizure disorder
- Shock with abnormal Pediatric Assessment Triangle
- DKA/hyperglycemia with nausea/vomiting OR altered mental state
- Respiratory distress in child with technology dependence (CPAP, Bi-PAP, trach)

Trauma (not meeting Trauma Decision Tree)
- Significant soft-tissue injury/complex wound
- Elbow injury with deformity
- Long bone deformity
- Femur fracture with intact pulse/motor/sensory

YES

If feasible, transport patient to comprehensive pediatric center; consider aviation if faster and of clinical benefit

NO

Consider Need for Regional Pediatric Care

Medical
- ALTE/brief, resolved, unexplained event
- Seizure patient requiring benzodiazepine
- Altered Mental Status, no trauma, no seizure, > 2 yr
- Respiratory distress with hypoxia or serious signs and symptoms
- Sepsis

Trauma (not meeting Trauma Decision Tree)
- Suspected child abuse

YES

If feasible, transport patient to regional pediatric center

NO

Transport per protocol to nearest appropriate facility